TIME-DEPENDENT COSMIC RAY MODULATION IN THE OUTER HELIOSPHERE

R. Manuel, S. E. S. Ferreira and M. S. Potgieter

Unit for Space Physics
North-West University
Potchefstroom 2520, South Africa

March 25, 2010
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{\text{source}}
\]}
Model is based on time-dependent 2D solution of Parker Transport Equation given by,
\[
\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}
\]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t) \)
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = - \mathbf{V} \cdot \nabla f + \nabla \cdot (K \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}
\]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t) \)
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{\text{source}}
\]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t) \)
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

\[
\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}
\]

- first term on the left side is the cosmic ray distribution function \(f(r, \theta, P, t)\)
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
- third term is the energy changes.
Model is based on time-dependent 2D solution of Parker Transport Equation given by,

$$\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}$$

- first term on the left side is the cosmic ray distribution function $f(r, \theta, P, t)$
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
- third term is the energy changes.
- and the last term is the possible sources of cosmic rays inside the heliosphere, which is zero for this study.
The diffusion tensor K as introduced in Parker’s Transport equation is given by,

$$K = \begin{bmatrix} K_{||} & 0 & 0 \\ 0 & K_{\perp \theta} & K_A \\ 0 & -K_A & K_{\perp r} \end{bmatrix}$$
The diffusion tensor \mathbf{K} as introduced in Parker’s Transport equation is given by,

$$
\mathbf{K} = \begin{bmatrix}
K_\parallel & 0 & 0 \\
0 & K_{\perp \theta} & K_A \\
0 & -K_A & K_{\perp r}
\end{bmatrix}
$$

- Where, K_\parallel is the diffusion coefficient parallel to the mean HMF,
The diffusion tensor K as introduced in Parker’s Transport equation is given by,

\[
\begin{bmatrix}
K_{||} & 0 & 0 \\
0 & K_{\perp \theta} & K_A \\
0 & -K_A & K_{\perp r}
\end{bmatrix}
\]

- Where, $K_{||}$ is the diffusion coefficient parallel to the mean HMF,
- $K_{\perp \theta}$ and $K_{\perp r}$ denote the diffusion coefficients perpendicular to the mean HMF in the polar and radial direction respectively, and
The diffusion tensor K as introduced in Parker’s Transport equation is given by,

$$K = \begin{bmatrix}
K_{||} & 0 & 0 \\
0 & K_{\perp \theta} & K_A \\
0 & -K_A & K_{\perp r}
\end{bmatrix}$$

- Where, $K_{||}$ is the diffusion coefficient parallel to the mean HMF,
- $K_{\perp \theta}$ and $K_{\perp r}$ denote the diffusion coefficients perpendicular to the mean HMF in the polar and radial direction respectively, and
- the anti-symmetric element K_A describes particle drifts which include gradient, curvature and heliospheric current sheet drift in the large scale HMF.
Introduce by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.
Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.

This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.
Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.

This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.

Results from this model are compared with Ulysses and Voyager observations.
COMPOUND APPROACH

- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.
- Results from this model are compared with Ulysses and Voyager observations.
- The diffusion and drift coefficients are scaled time-dependently via a function $f_2(t)$, where
COMPOUND APPROACH

- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.

- Results from this model are compared with Ulysses and Voyager observations.

- The diffusion and drift coefficients are scaled time-dependently via a function $f_2(t)$, where

$$f_2(t) = \left(\frac{B_0}{B(t)} \right)^{\frac{\alpha(t)}{\alpha_0}}$$

This function is now dependent on the measured HMF magnitude and tilt angle.
From Teufel and Schlickeiser, 2003 follows:

$$\lambda_|| = \frac{3s}{\sqrt{\pi}(s - 1)} \frac{R^2}{b} \frac{k_{\text{min}}}{\delta B_{\text{slab},x}} \left(\frac{B_0}{\delta B_{\text{slab},x}} \right)^2 K$$
From Teufel and Schlickeiser, 2003 follows:

\[
\lambda_{||} = \frac{3s}{\sqrt{\pi}(s - 1)^2 R} \frac{b_k}{b_k \min} \left(\frac{B_0}{\delta B_{\text{slab},x}} \right)^2 K
\]

where, \(\delta B_{\text{slab},x}^2 = 0.5\delta B_{\text{slab}}^2 = 0.1\delta B^2 \),

\[R = k \min R_L , \quad R_L = \frac{P}{B_0} \quad \text{and} \quad s = 5/3 \]
From Teufel and Schlickeiser, 2003 follows:

\[
\lambda_\parallel = \frac{3s}{\sqrt{\pi} (s - 1)} \frac{R^2}{b} \frac{R^2}{k_{min}} \left(\frac{B_0}{\delta B_{slab,x}} \right)^2 K
\]

where, \(\delta B_{slab,x}^2 = 0.5 \delta B_{slab}^2 = 0.1 \delta B^2 \),

\[R = k_{min} R_L \quad , \quad R_L = \frac{P}{B_0} \quad \text{and} \quad s = 5/3 \]

At 2.5 GV we approximate \(K \) to be a constant resulting in a time dependence for \(\lambda_\parallel \) as,

\[
\lambda_\parallel \propto \left(\frac{1}{\delta B} \right)^2
\]
From Shalchi et al., 2004 follows:

\[\lambda_\perp \approx \left[\frac{2v - 1}{4v} F_2(v) \, l_{slab} \, a^2 \, \frac{\delta B^2}{B_0^2} \, \frac{2\sqrt{3}}{25} \right]^{\frac{2}{3}} \lambda_{||}^{\frac{1}{3}} \]
From Shalchi et al., 2004 follows:

\[\lambda_\perp \approx \left[\frac{2v - 1}{4v} F_2(v) \, l_{\text{slab}} \, a_2 \, \frac{\delta B^2}{B_0^2} \, \frac{2\sqrt{3}}{25} \right]^{\frac{2}{3}} \lambda_\parallel^{\frac{1}{3}} \]

At 2.5 GV we approximate the time dependence for \(\lambda_\perp \) as,

\[\lambda_\perp \propto \left(\frac{\delta B}{B_0} \right)^{\frac{4}{3}} \left(\frac{1}{\delta B} \right)^{\frac{2}{3}} \]
Minnie et al. (2007), showed that K_A depends on δB, which can change over a solar cycle.
Minnie et al. (2007), showed that K_A depends on δB, which can change over a solar cycle.

Which shows that drifts needs to be scaled down to even zero at solar maximum periods.
Minnie et al. (2007), showed that K_A depends on δB, which can change over a solar cycle.

Which shows that drifts needs to be scaled down to even zero at solar maximum periods.

We use a similar dependence, in compound approach but instead of K_A depending on δB it depends on α the tilt angle.

$$f_3(t) = (75.0 - \alpha(t)) \times 0.013$$

Ndiitwani et al., 2005
Time dependence in drift coefficient

Minnie et al., 2007

Ndiitwani et al., 2005
Along Voyager 1 trajectory
Observing signatures of Heliospheric asymmetry?

Opher, 2008
Heliospheric boundary at 124 AU

Cosmic ray intensities from 1984 to 2009

- Voyager 1 > 70 MeV Protons
- Voyager 2 > 70 MeV Protons
- IMP 8 > 70 MeV Protons
- Ulysses 2.5 GV Protons

Voyager 1
Voyager 2

Differential Intensity (m^2.s.sr.MeV)^{-1}

Time (years):

2.5 GV
Heliospheric boundary at 118 AU

Cosmic ray intensities from 1984 to 2009

- Voyager 1 > 70 MeV Protons
- Voyager 2 > 70 MeV Protons
- IMP 8 > 70 MeV Protons
- Ulysses 2.5 GV Protons

Voyager 1
Voyager 2

Differential Intensity (m².s.sr.MeV⁻¹)

Time (years)

2.5 GV
Optimal Model Result

Cosmic ray intensities from 1984 to 2009

- Voyager 1 > 70 MeV Protons
- Voyager 2 > 70 MeV Protons
- IMP 8 > 70 MeV Protons
- Ulysses 2.5 GV Protons
- Voyager 1 (124 AU)
- Voyager 2 (118 AU)

Differential Intensity (m²·s⁻¹·sr⁻¹·MeV⁻¹)

A < 0
A > 0
2.5 GV
2002, Solar max

2009, Solar min (A < 0)
Predicting intensities up to heliopause along Voyager 1 and 2 trajectory
A possible Heliospheric boundary position along Voyager 1 and Voyager 2 trajectory
Conclusion

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
Conclusion

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.

Next phase is to predict a possible range for the local interstellar spectra. We predict a steady increase in Voyager 1 cosmic ray intensity observations up to heliopause. But for Voyager 2 there is still a large modulation volume left, leading to solar cycle related changes in intensities up to heliopause.
Conclusion

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
- Next phase is to predict a possible range for the local interstellar spectra.
Conclusion

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
- Next phase is to predict a possible range for the local interstellar spectra.
- We predict a steady increase in Voyager 1 cosmic ray intensity observations up to heliopause. But for Voyager 2 there is still a large modulation volume left, leading to solar cycle related changes in intensities up to heliopause.
Voyager 2 > 70 MeV Protons

- **Solar cycle**
- **Solar cycle shifted by +3 years**
- **Solar cycle shifted by -3 years**

Differential Intensity $(m^2 \cdot s^{-1} \cdot sr \cdot MeV^{-1})$

Time (Years)

Thank You!