
Programming

Naming Variables

MATLAB variable names must begin with a letter, which may be followed by any
combination of letters, digits, and underscores. MATLAB distinguishes between
uppercase and lowercase characters, so A and a are not the same variable.

Although variable names can be of any length, MATLAB uses only the first N
characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make each
variable name unique in the first N characters to enable MATLAB to distinguish
variables.

N = namelengthmax
N =
 63

The genvarname function can be useful in creating variable names that are both
valid and unique. See the genvarname reference page to find out how to do this.

Verifying a Variable Name

You can use the isvarname function to make sure a name is valid before you
use it. isvarname returns 1 if the name is valid, and 0 otherwise.

isvarname 8th_column
ans =
 0 % Not valid − begins with a number

Avoid Using Fun ction Names for Variables

When naming a variable, make sure you are not using a name that is already
used as a function name, either one of your own M−file functions or one of the
functions in the MATLAB language. If you define a variable with a function name,
you will not be able to call that function until you either remove the variable
from memory with the clear function, or invoke the function using builtin .

For example, if you enter the following command, you will not be able to use the
MATLAB disp function until you clear the variable with clear disp .

disp = 50;

To test whether a proposed variable name is already used as a function name,
use

which −all variable_name

Potential Co nflict with Function Names

There are some MATLAB functions that have names that are commonly used as
variable names in programming code. A few examples of such functions are i ,
j , mode, char , size , and path .

If you see a need to use a particular function name such as one of these for a
variable, and you determine that you have no need to call that function in your
program, you should be aware that there is still a possibility for conflict. See the
following two examples:

program, you should be aware that there is still a possibility for conflict. See the
following two examples:

Variables Loaded From a MAT−File
Variables In Evaluation Statements

Variables Loaded From a MAT−File. The function shown below loads
previously saved data from MAT−file settings.mat and is supposed to display
the value of one of the loaded variables, mode. However, mode is also the name
of a MATLAB function and, in this case, MATLAB interprets it as the function and
not the variable loaded from the MAT−file:

function show_mode
load settings;
whos mode
fprintf(’Mode is set to %s\n’, mode)

Assume that mode already exists in the MAT−file. Execution of the function
shows that, even though mode is successfully loaded into the function
workspace as a variable, when MATLAB attempts to operate on it in the last line,
it interprets mode as a function. This results in an error:

show_mode
 Name Size Bytes Class

 mode 1x6 12 char array

Grand total is 6 elements using 12 bytes

Not enough input arguments.

Error in ==> show_mode at 4
fprintf(’Mode is set to %s\n’, mode)

Because MATLAB parses function M−files before they are run, it needs to
determine before runtime which identifiers in the code are variables and which
are functions. The function in this example does not establish mode as a
variable name and, as a result, MATLAB interprets it as a function name instead.

There are at least two ways to make this function work as intended without
having to change the variable name. Both indicate to MATLAB that the name
represents a variable, and not a function:

Name the variable explicitly in the load statement:
function show_mode
load settings mode;
whos mode
fprintf(’Mode is set to %s\n’, mode)

Initialize the variable (e.g., set it to an empty matrix or empty string) at
the start of the function:

function show_mode
mode = ’’;
load settings;
whos mode
fprintf(’Mode is set to %s\n’, mode)

Variables In Evaluation Statements. Variables used in evaluation statements
such as eval , evalc , and evalin can also be mistaken for function names. The
following M−file defines a variable named length that conflicts with MATLAB
length function:

function find_area
eval(’length = 12; width = 36;’);
fprintf(’The area is %d\n’, length .* width)

The second line of this code would seem to establish length as a variable name
that would be valid when used in the statement on the third line. However, when
MATLAB parses this line, it does not consider the contents of the string that is
to be evaluated. As a result, MATLAB has no way of knowing that length was
meant to be used as a variable name in this program, and the name defaults to a
function name instead, yielding the following error:

find_area

Not enough input arguments.

To force MATLAB to interpret length as a variable name, use it in an explicit
assignment statement first:

function find_area
length = [];
eval(’length = 12; width = 36;’);
fprintf(’The area is %d\n’, length .* width)

 Variables Guidelines to Using Variables

© 1994−2005 The MathWorks, Inc. Terms of Use Patents Trademarks

