
Programming    

Logical Operators 

MATLAB offers three types of logical operators and functions:

Element−wise −− operate on corresponding elements of logical arrays. 
Bit−wise −− operate on corresponding bits of integer values or arrays. 
Short−circuit −− operate on scalar, logical expressions. 

The values returned by MATLAB logical operators and functions, with the
exception of bit−wise functions, are of type logical  and are suitable for use
with logical indexing.

Element−Wise Operators and Functions 

The following logical operators and functions perform element−wise logical
operations on their inputs to produce a like−sized output array. The examples
shown in the following table use vector inputs A and B, where

A = [0 1 1 0 1];
B = [1 1 0 0 1];

Operator Description Example

& Returns 1 for every element location that is 
true  (nonzero) in both arrays, and 0 for all
other elements.

A & B = 01001

| Returns 1 for every element location that is 
true  (nonzero) in either one or the other, or
both arrays, and 0 for all other elements.

A | B = 11101

~ Complements each element of the input array, 
A.

~A = 10010

xor Returns 1 for every element location that is 
true  (nonzero) in only one array, and 0 for all
other elements.

xor(A,B)=10100

For operators and functions that take two array operands, (&, | , and xor ), both
arrays must have equal dimensions, with each dimension being the same size.
The one exception to this is where one operand is a scalar and the other is not.
In this case, MATLAB tests the scalar against every element of the other operand.

Note    MATLAB converts any finite nonzero, numeric values used as
inputs to logical expressions to logical 1, or true . 

Operator Overloading.    You can overload the &, | , and ~ operators to make
their behavior dependent upon the data type on which they are being used. Each
of these operators has a representative function that is called whenever that
operator is used. These are shown in the table below. 



Logical Operation Equivalent Function

A & B and(A, B)

A | B or(A, B)

~A not(A)

Other Array Functions.    Two other MATLAB functions that operate logically on
arrays, but not in an element−wise fashion, are any  and all . These functions
show whether any or all elements of a vector, or a vector within a matrix or an
array, are nonzero.

When used on a matrix, any  and all  operate on the columns of the matrix.
When used on an N−dimensional array, they operate on the first nonsingleton
dimension of the array. Or, you can specify an additional dimension  input to
operate on a specific dimension of the array.

The examples shown in the following table use array input A, where

A = [0   1   2;
     0  −3   8;
     0   5   0];

Function Description Example

any (A) Returns 1 for a vector where any element of the vector is 
true  (nonzero), and 0 if no elements are true .

any(A)
ans =
0 1 1

all (A) Returns 1 for a vector where all elements of the vector
are true  (nonzero), and 0 if all elements are not true .

all(A)
ans =
0 1 0

Note    The all  and any  functions ignore any NaN values in the input
arrays. 

Logical Expressions Using the find Function.    The find  function determines
the indices of array elements that meet a given logical condition. The function is
useful for creating masks and index matrices. In its most general form, find
returns a single vector of indices. This vector can be used to index into arrays of
any size or shape.

For example,

A = magic(4)
A =
    16    2    3   13
     5   11   10    8
     9    7    6   12
     4   14   15    1

i = find(A > 8);
A(i) = 100
A =



   100    2    3  100
     5  100  100    8
   100    7    6  100
     4  100  100    1

Note    An alternative to using find  in this context is to index into the
matrix using the logical expression itself. See the example below. 

The last two statements of the previous example can be replaced with this one
statement:

A(A > 8) = 100;

You can also use find  to obtain both the row and column indices of a
rectangular matrix for the array values that meet the logical condition:

A = magic(4)
A =
    16    2    3   13
     5   11   10    8
     9    7    6   12
     4   14   15    1

[row, col] = find(A > 12)
row =
     1
     4
     4
     1
col =
     1
     2
     3
     4

Bit−Wise Functions 

The following functions perform bit−wise logical operations on nonnegative
integer inputs. Inputs may be scalar or in arrays. If in arrays, these functions
produce a like−sized output array.

The examples shown in the following table use scalar inputs A and B, where

A = 28;               % binary 11100
B = 21;               % binary 10101

Function Description Example

bitand Returns the bit−wise AND of two nonnegative
integer arguments.

bitand(A,B)
= 20
(binary
10100)



bitor Returns the bit−wise OR of two nonnegative
integer arguments.

bitor(A,B) =
29
(binary
11101)

bitcmp Returns the bit−wise complement as an n−bit
number, where n is the second input argument
to bitcmp .

bitcmp(A,5)
= 3
(binary
00011)

bitxor Returns the bit−wise exclusive OR of two
nonnegative integer arguments.

bitxor(A,B)
= 9
(binary
01001)

Short−Circuit Operators 

The following operators perform AND and OR operations on logical expressions
containing scalar values. They are short−circuit operators in that they evaluate
their second operand only when the result is not fully determined by the first
operand. 

Operator Description

&& Returns logical 1 (true ) if both inputs evaluate to true , and
logical 0 (false ) if they do not.

|| Returns logical 1 (true ) if either input, or both,  evaluate to true ,
and logical 0 (false ) if they do not.

The statement shown here performs an AND of two logical terms, A and B:

A && B

If A equals zero, then the entire expression will evaluate to logical 0 (false ),
regardless of the value of B. Under these circumstances, there is no need to
evaluate B because the result is already known. In this case, MATLAB
short−circuits the statement by evaluating only the first term.

A similar case is when you OR two terms and the first term is true . Again,
regardless of the value of B, the statement will evaluate to true . There is no
need to evaluate the second term, and MATLAB does not do so.

Advantage of Short−Circuiting.    You can use the short−circuit operators to
evaluate an expression only when certain conditions are satisfied. For example,
you want to execute an M−file function only if the M−file resides on the current
MATLAB path.

Short−circuiting keeps the following code from generating an error when the
file, myfun.m , cannot be found:

comp = (exist(’myfun.m’) == 2) && (myfun(x) >= y)

Similarly, this statement avoids divide−by−zero errors when b equals zero:

x = (b ~= 0) && (a/b > 18.5)



You can also use the && and ||  operators in if  and while  statements to take
advantage of their short−circuiting behavior:

if (nargin >= 3) && (ischar(varargin{3}))

  Relational Operators  Operator Precedence 

© 1994−2005 The MathWorks, Inc.  Terms of Use  Patents  Trademarks


