
Programming

Loop Control −− for, while, continue, break

With loop control statements, you can repeatedly execute a block of code,
looping back through the block while keeping track of each iteration with an
incrementing index variable. Use the for statement to loop a specific number of
times. The while statement is more suitable for basing the loop execution on
how long a condition continues to be true or false. The continue and break
statements give you more control on exiting the loop.

for

The for loop executes a statement or group of statements a predetermined
number of times. Its syntax is

for index = start:increment:end
 statements
end

The default increment is 1. You can specify any increment, including a negative
one. For positive indices, execution terminates when the value of the index
exceeds the end value; for negative increments, it terminates when the index is
less than the end value.

For example, this loop executes five times.

for n = 2:6
 x(n) = 2 * x(n − 1);
end

You can nest multiple for loops.

for m = 1:5
 for n = 1:100
 A(m, n) = 1/(m + n − 1);
 end
end

Note You can often speed up the execution of MATLAB code by
replacing for and while loops with vectorized code. See Vectorizing
Loops for details.

Using Arrays as Indices. The index of a for loop can be an array. For
example, consider an m−by−n array A. The statement

for k = A
 statements
end

sets k equal to the vector A(:,i) , where i is the iteration number of the loop.
For the first loop iteration, k is equal to A(:,1) ; for the second, k is equal to
A(:,2) ; and so on until k equals A(:,n) . That is, the loop iterates for a number
of times equal to the number of columns in A. For each iteration, k is a vector
containing one of the columns of A.

containing one of the columns of .

while

The while loop executes a statement or group of statements repeatedly as long
as the controlling expression is true (1). Its syntax is

while expression
 statements
end

If the expression evaluates to a matrix, all its elements must be 1 for execution
to continue. To reduce a matrix to a scalar value, use the all and any functions.

For example, this while loop finds the first integer n for which n! (n factorial) is
a 100−digit number.

n = 1;
while prod(1:n) < 1e100
 n = n + 1;
end

Exit a while loop at any time using the break statement.

while Statements and Empty Arrays. A while condition that reduces to an
empty array represents a false condition. That is,

while A, S1, end

never executes statement S1 when A is an empty array.

continue

The continue statement passes control to the next iteration of the for or
while loop in which it appears, skipping any remaining statements in the body
of the loop. In nested loops, continue passes control to the next iteration of
the for or while loop enclosing it.

The example below shows a continue loop that counts the lines of code in the
file, magic.m , skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen(’magic.m’, ’r’);
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) | strncmp(line, ’%’, 1)
 continue
 end
 count = count + 1;
end
disp(sprintf(’%d lines’, count));

break

The break statement terminates the execution of a for loop or while loop.
When a break statement is encountered, execution continues with the next
statement outside of the loop. In nested loops, exits from the innermost

 statement is encountered, execution continues with the next
statement outside of the loop. In nested loops, break exits from the innermost
loop only.

The example below shows a while loop that reads the contents of the file
fft.m into a MATLAB character array. A break statement is used to exit the
while loop when the first empty line is encountered. The resulting character
array contains the M−file help for the fft program.

fid = fopen(’fft.m’, ’r’);
s = ’’;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line)
 break
 end
 s = strvcat(s, line);
end
disp(s)

 Conditional Control −− if, switch Error Control −− try, catch

© 1994−2005 The MathWorks, Inc. Terms of Use Patents Trademarks

