3-D Visualization

Parametric Surfaces

The functions that draw surfaces can take two additional vector or matrix arguments to describe surfaces with specific x and y data. If z is an $m-b y-n$ matrix, x is an n -vector, and y is an m -vector, then

```
mesh(x,Y,Z,C)
```

describes a mesh surface with vertices having colorc (i,j) and located at the points

```
(x(j), Y(i), Z(i,j))
```

where x corresponds to the columns of z and y to its rows.
More generally, if x, y, z, and c are matrices of the same dimensions, then

```
mesh(X,Y,Z,C)
```

describes a mesh surface with vertices having colorc (i,j) and located at the points

```
(X(i,j), Y(i,j), Z(i,j))
```

This example uses spherical coordinates to draw a sphere and color it with the pattern of pluses and minuses in a Hadamard matrix, an orthogonal matrix used in signal processing coding theory. The vectorstheta and phi are in the range$\pi \leq$ theta $\leq \pi$ and $-\pi / 2 \leq \mathrm{phi} \leq \pi / 2$. Because theta is a row vector and phi is a column vector, the multiplications that produce the matrices x, y, and z are vector outer products.

```
k = 5;
n = 2^k-1;
theta = pi*(-n:2:n)/n;
phi = (pi/2)*(-n:2:n)'/n;
X = cos(phi)*}\operatorname{cos}(theta)
Y = cos(phi)*sin(theta);
Z = sin(phi)*ones(size(theta));
```



```
C = hadamard(2^k);
surf(X,Y,Z,C)
axis square
```


Surface Plots of Nonuniformly Sampled Data
Hidden Line Removal $\boldsymbol{\square}$
© 1994-2005 The MathWorks, Inc.• Terms of Use • Patents • Trademarks

