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We present the results of an experimental study on the transition to spiral vortices in flow between concentric
counter-rotating cylinders in the presence of an axial through-flow, i.e., in spiral Poiseuille flow. The experi-
ments were performed in an apparatus having an aspect ratio �=L /d=22.8 �L axial length, d gap width
between cylinders� and end plates enabling an in and outflow of mass. As a result of an applied axial through-
flow the “classical” Hopf bifurcation to spiral vortices �SPI� splits up and a primary and secondary branch of
down and upstream propagating SPI, respectively, as well as a transient quasiperiodic flow appear. Down-
stream propagating SPI resulting from the primary supercritical Hopf bifurcation are either convectively or
absolutely unstable. The bifurcation structure observed in this open flow experiment is in qualitative agreement
with predictions from theory of Hopf bifurcation with broken reflection symmetry �J. D. Crawford and E.
Knobloch, Nonlinearity 1, 617 �1988�� and also in quantitative agreement with results from recent numerical
calculations �A. Pinter, M. Lücke, and C. Hoffmann, Phys. Rev. E 67, 026318 �2003�; C. Hoffmann, M. Lücke,
and A. Pinter, ibid. 69, 056309 �2004��.
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I. INTRODUCTION

Bifurcations �1� play a crucial role in the organization of
complex dynamics and patterns in many spatially extended
nonlinear systems, such as, e.g., hydrodynamic flows �2�.
Time-dependent spatial patterns often appear in flow systems
from a Hopf bifurcation of the basic laminar flow state. Ex-
amples arise from binary mixture convection �3�, magneto-
convection �4�, stratified Taylor-Couette flow �5�, and from
counter-rotating Taylor-Couette flow �6�. In particular sym-
metries are crucial in order to determine the solution set
close to a bifurcation in a spatially extended nonlinear sys-
tem. Models of bifurcations in pattern forming systems with
one spatial dimension often assume an invariance of a physi-
cal system under translations and a reflection symmetry, i.e.,
an O�2�-symmetry. Under such an assumption the critical
eigenvalues at a Hopf bifurcation will typically have double
multiplicity and the resulting patterns from the basic state
gives rise to two types of periodic solutions hereafter re-
ferred to as standing waves and traveling waves. The travel-
ing wave solution is further divided into two different
branches of traveling waves propagating in opposite direc-
tions.

A. Spiral vortices in Taylor-Couette flow

One of the classical hydrodynamic systems for the study
of Hopf bifurcation with O�2�-symmetry is counter-rotating
Taylor-Couette flow. This is the flow of a viscous liquid in
the gap between two concentric rotating cylinders. Under the
assumption of cylinders having an infinite axial length basic
laminar Couette flow has an axial translational invariance,
reflection symmetry, and azimuthal rotational invariance.
The flow is thus invariant under the group O�2��SO�2� �7�.
On the basis of linear stability analysis of laminar Couette
flow, Krueger et al. �8� predicted the existence of nonaxi-
symmetric time-dependent spiral vortices resulting from a
Hopf bifurcation for sufficiently counter-rotating cylinders.

Spiral vortices have in general the form of traveling waves in
the axial direction and of rotating waves in the azimuthal
direction.

The existence of spiral vortices has been confirmed ex-
perimentally by Snyder �9� and Andereck et al. �10� in
Taylor-Couette flow with different radius ratios � and aspect
ratios � �ratio of axial length to gap width�, respectively.
Further combined numerical and experimental investigations
on the primary instability and also on bicritical curves in
flow between counter-rotating cylinders have been per-
formed by Langford et al. �11� and Tagg et al. �12�. Transi-
tion to spiral vortices and their behavior in the nonlinear
regime have been studied in �13�. Experimental investiga-
tions from Langenberg et al. �14� revealed an influence of
finite axial length on the transition to spiral vortices in ac-
cordance with the theory of O�2�-symmetric Hopf bifurca-
tion with broken translational invariance �15�.

B. Hopf bifurcation with broken symmetries

Experimental systems never have perfect symmetries. For
the applicability of bifurcation models to physical experi-
ments it is therefore crucial to understand the influence of
broken symmetries on the structure of the symmetric bifur-
cation. In theory a broken symmetry is reflected by addi-
tional imperfection terms in the normal form giving rise to a
different bifurcation structure and new dynamics close to the
critical point �16�. For example, due to the finite spatial ex-
tent of experimental systems the translational invariance is
always broken. The effect of broken translational invariance
on O�2�-symmetric Hopf bifurcations has been studied theo-
retically in �15�. The reflection symmetry of an experimental
system can be broken by an additional external field, like an
imposed mean flow in a hydrodynamic system. The effect of
a broken reflection symmetry on O�2�-symmetric Hopf bifur-
cation has been studied theoretically in �17–19�. The effect
of breaking O�2� to SO�2� introduces imperfection terms to
the normal form of O�2�-symmetric Hopf bifurcation. For
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the non-degenerate case at linear order the perturbed normal
form of an O�2�-symmetric Hopf bifurcation with broken
reflection symmetry reads

dz1

dt
= �� + i��z1 + „b�z1�2 + �a + b��z2�2…z1 + �z1, �1�

dz2

dt
= �� + i��z2 + „b�z2�2 + �a + b��z1�2…z2 − �z2 �2�

for the two complex-valued amplitudes z1=r1ei�1 and z2
=r2ei�2 of the counter-propagating traveling wave solutions
�� ,� ,a ,b�R� and with the imperfection parameter �=�r

+ i�i�C. For �r�0 the two traveling wave solutions �z1,2
�0 and z2,1=0� do not bifurcate simultaneously but appear
each from a single Hopf bifurcation at different critical
points from the basic state with different wave speeds �for
�i�0�. Standing waves �z1=z2� are no longer solutions but
quasiperiodic modulated waves arising from a secondary bi-
furcation of a traveling wave. The nonlinear behavior of the
bifurcated solutions can be more complicated, in particular
close to degeneracy �17�.

C. Spiral Poiseuille flow

As a result of an imposed axial through-flow the character
of Taylor-Couette flow changes from a closed to an open
flow. The basic flow of a Taylor-Couette system with axial
through-flow under the assumption of infinite axial length is
a superposition of circular Couette and annular Poiseuille
flow, called Couette-Poiseuille flow �CPF�. The sensitivity of
open flows to external perturbation is associated with abso-
lute and convective instabilities �20� which have also been
studied in semifinite and finite open flows �21�. In the con-
vective unstable regime small localized perturbations of the
basic laminar flow will grow while propagating along with
the flow but decay at any spatial point. In the absolute un-
stable regime a perturbation will grow at any spatial point.
Convective and absolute instabilities have been investigated
experimentally �22� and theoretically �23� in the “classical”
setup with a stationary outer cylinder. Recent numerical �24�
and experimental investigations �25� have shown that con-
vective and absolute instabilities occur also at the onset of
spiral vortices in counter-rotating Taylor-Couette flow with
axial through-flow, called counter-rotating spiral Poiseuille
flow. However, the concept of convective and absolute insta-
bilities originates from linear stability theory and thus does
not make predictions on the nonlinear behavior of the spiral
solutions.

D. Aim of work

The aim of this work is to investigate the effect of sym-
metry breaking perturbations due to an additional mean flow
on the bifurcation structure and the dynamics of the
O�2�-symmetric Hopf bifurcation that occur at the onset of
spiral vortices in counter-rotating spiral Poiseuille flow.

II. EXPERIMENTAL SETUP

The spiral Poiseuille flow experiment consists of a vis-
cous fluid confined in the gap between two independently

rotating concentric cylinders with an imposed axial mean
flow. The temperature of the fluid is thermostatically con-
trolled to �24.00±0.01� °C. As working fluid silicon oil with
a kinematic viscosity 	=10.6 cS at 24 °C is used. The inner
cylinder of the apparatus is machined from stainless steel
having a radius of ri= �12.50±0.01� mm, while the outer cyl-
inder is made from optically polished glass with a radius of
ro= �25.00±0.01� mm. The flow is confined in axial direction
by two end plates having a distance L which defines the axial
length of the system. Both end plates are shaped identically
at top and bottom in order to ensure reflection symmetry of
the experimental apparatus. Geometric parameters are the as-
pect ratio �=L /d, with gap width d=ro−ri, and the radius
ratio �=ri /ro. The radius ratio is held fixed to �=0.5 for all
measurements and the axial length of the apparatus is L
=285 mm which corresponds to an aspect ratio �=22.8. As
control parameters serve the Reynolds number of the inner
�i� and the outer �o� cylinder, Rei,o=dri,o
i,o /	, where 
i,o

denotes the angular velocity of the inner �i� and the outer �o�
cylinder, respectively. We utilize laser Doppler velocimetry
�LDV� for measurements of the local flow velocity. All time
series are recorded with LDV at the same position in the
flow, i.e., at a radial distance of 1.3 mm from the inner cyl-
inder in the axial middle. In addition to that flow visualiza-
tion measurements are performed in order to distinguish be-
tween different flow states due to their spatiotemporal
patterns.

The end plates confining the flow at the top and bottom of
the cylinder are systematically perforated in order to enable a
mass flow in the axial direction. Size and distribution of the
small wholes in the end plate are carefully chosen in order to
enable an inlet flow profile that is as similar as possible to
axisymmetric Poiseuille flow. The end plates are held fixed
in the laboratory frame and are designed in a way to avoid
the azimuthal velocity component of the axial through-flow
at the inlet. The Reynolds number of the axial through-flow
is defined by ReD=d�v� /	, where �v� denotes the mean axial
velocity. For all measurements ReD is said to be positive for
an axial through-flow directed upward in the laboratory
frame and negative for a through-flow directed downward.
Its rate is controlled by a precision valve to a resulting accu-
racy of �ReD= ±0.02. The redistribution length of an axial
Poiseuille flow from an inhomogeneous flow at the inlet de-
pends, of course, on ReD. However, since only small ReD
��1.5� are investigated and due to the design of the inlet
flow profile at the end plate the inhomogeneous velocity dis-
tribution at the inlet redistributes to an axial Poiseuille profile
even at small axial distances from the inlet. A typical radial
profile of the axial velocity, measured at Rei,o=0 and ReD
=1.5 at a distance of 12.5 mm from the inlet, is shown in
Fig. 1. We observed a reasonable agreement with the analyti-
cal Poiseuille profile even at a small distance from the inlet
�for example, one times a gap width�. Small deviations from
the analytical profile are still present here, but disappear
quickly as the flow evolves downstream.

The focus of these investigations is on small perturbations
of the reflection symmetry and the axial velocity profile is
very similar to axial Poiseuille flow, even in the whole flow
domain except very close to the end plates.
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III. RESULTS

A. Characterization of spiral Poiseuille flow

A recent experimental investigation �14� on length effects
in counterrotating Taylor-Couette flow with �=0.5 has re-
vealed that for an aspect ratio �20 only counterpropagat-
ing spiral vortices but no standing waves appear from a su-
percritical Hopf bifurcation of the basic flow. Therefore, an
aspect ratio �=22.8, which is chosen for our experiments,
ensures spiral vortices to appear as the primary pattern for a
Hopf bifurcation at least for ReD=0. At the onset of spiral
vortices the flow breaks reflection symmetry and thus two
propagating spiral solutions appear. Both flow states are ob-
served in the experiment and are labeled up �SPI↑� and
downward propagating spirals �SPI↓� since in laser light
sheet measurements of the �r ,z� plane vortices seem to
propagate either up or downward, respectively, in the labo-
ratory frame. Note that the spiral vortices are not real trav-
eling waves like in infinite models but only rotating waves in
finite systems. However, since these solutions are related to
the propagating solutions in models we will further speak of
“propagating spirals”. Since SPI↑ and SPI↓ propagate in op-
posite directions the reflection symmetry of the flow is bro-
ken at the Hopf bifurcation. Both values of propagation
speed are equal and therefore the oscillation frequencies de-
tected at fixed measurement position by LDV are also iden-
tical.

As a result of the axial through-flow the reflection sym-
metry of a counterrotating Taylor-Couette system is broken.
Both flow states �SPI↑ and SPI↓� can also be found in the
experiments for supercritical values of Rei in the case of an
applied axial through-flow.

Flow visualizations of both flow states are depicted in
Figs. 2�a� and 2�b�. Besides their differences in propagation
direction spiral vortices can also be distinguished in principle
by their azimuthal wave number m which is either +1 or −1.
Here, for ReD�0 and counterclockwise rotating 
i upward
propagating SPI↑ have an azimuthal wave number m= +1
and downward propagating SPI↓ have m=−1. In wide-gap
counterrotating Taylor-Couette experiments spiral vortices
appear only very close to the inner cylinder and are sur-
rounded by a relatively thick layer of nearly laminar Couette
and Couette-Poiseuille flow, respectively. This spatial pattern

can be observed in flow visualization as those shown in Fig.
2. In addition to that, laser-light sheet techniques in combi-
nation with LDV measurements provide detailed information
about spiral vortices at the inner cylinder.

However, since the apparatus is constructed in a way that
the external flow can either be directed up- or downward we
have to distinguish further between up and downstream
propagating spiral vortices, i.e., spirals having a direction of
propagating in the opposite or in the same direction as the
external flow, respectively. Thus, for example, for ReD�0,
i.e., an imposed flow directed upward, SPI↑ are propagating
downstream while SPI↓ are propagating upstream.

Downstream propagating SPI↑ and upstream propagating
SPI↓ can be furthermore distinguished due to a frequency
shift, that can be detected in power spectra of time series
recorded by LDV measurements, towards higher �SPI↑� and
lower �SPI↓� oscillation frequencies compared to the fre-
quency at ReD=0. This frequency shift is a result on the axial
through-flow and can be seen in the power spectra of both
flow states in Fig. 2.

B. Transition to spirals with axial through-flow

In order to demonstrate the behavior at the transition to
spiral vortices in spiral Poiseuille flow an experimental bi-
furcation diagram is presented in Fig. 3�a�. It was measured
at ReD=−1.5 �downward directed axial flow� and Reo
=−100. Note that, in order to distinguish SPI↑ and SPI↓ in
the same diagram, different measures of the bifurcation for
each flow state are chosen. The amplitude of SPI↓ ��� is
estimated from the mean of the maxima, whereas the flow
state of SPI↑ ��� is estimated by the minima of the velocity

FIG. 1. Radial profile of axial velocity measured at Rei,o=0 at a
distance of 12.5 mm �d� above the inflow end plate for ReD=1.5
��� in comparison with the analytical Poiseuille profile �solid line�.

FIG. 2. Flow visualization and power spectra of corresponding
time series of up and downward propagating spiral vortices re-
corded at �a� Reo=−125, ReD=0.6, and Rei=125 for SPI↑ and �b�
Rei=133 for SPI↓.
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in the corresponding time series. Starting from the basic
laminar flow �denoted as CPF, �� an increase of Rei leads to
the convective instability border at Rec1 and thereby to
downstream propagating SPI↓. Note that Fig. 3 represents
measurements recorded at ReD=−1.5�0. Amplitude and
phase of SPI↓ are initially fluctuating in the convectively
unstable regime. The critical Reynolds number Rec1 corre-
sponding to the onset of SPI↓ is defined in the experiment as
that Rei where the characteristic frequency peak of spiral
vortices is detectable in power spectrum for the first time. A
further increase of Rei leads to absolutely unstable CPF at
Rec2. The threshold is determined in the experiments by the
normalized variance of the main peak in the power spectrum

�2 =
Š�f − �f��2

‹

�f�2 . �3�

It is significantly reduced when the flow becomes absolutely
unstable �see �25,26� for details�. The critical Reynolds num-
bers have also been determined by linear stability analysis by
Pinter et al. �24� and show a reasonable agreement with the
measurements of the convective and a quantitative agree-
ment for the absolute instability border. An experimental in-
vestigation on convective and absolute instability borders of
spiral vortices has been performed in �25�. Upstream propa-
gating SPI↑ do not exist below Rec3 and cannot be archived
by quasistatistical increase of Rei from subcritical values to-
wards Rec3. But it is possible to observe SPI↑ in the experi-
ment after a sudden increase of Rei from a value below Rec1

towards a value that is larger than Rec3. For these Reynolds
numbers SPI↑ is stable and coexists with downstream propa-
gating SPI↓. A decrease of Rei quasistatically below Rec3
=107.9 results in a transition from SPI↑ to SPI↓. Note that,
for this particular set of control parameters, Rec3 and Rec2
have very similar values but it will become evident that they
are not identical in general.

In Fig. 3�b� the oscillation frequencies measured from
SPI↑ and SPI↓ are depicted. These frequencies have been
detected from the power spectra of the corresponding time
series as exemplarily depicted in Fig. 2. In this range of
Reynolds number the oscillation frequency is almost inde-
pendent of Rei for each flow state but a frequency shift be-
tween both flow states can be observed. This is a result of the
imposed axial through-flow. Downstream propagating SPI↓
have an increased value of oscillation frequency compared to
upstream propagating SPI↑.

C. Stability diagram of spiral Poiseuille flow

The stability diagram of spiral Poiseuille flow is depicted
in Fig. 4. The convective �dotted� and absolute �solid� insta-
bility borders have been calculated by linear stability analy-
sis by Pinter et al. �24�. The borders of the convective regime
have been verified experimentally for the case of ReD�0 in
�25�. For this case the basic flow becomes convectively un-
stable towards downstream propagating SPI↑ and SPI↓ for

FIG. 3. Bifurcation diagram measured in a spiral Poiseuille flow
experiment for ReD=−1.5 and Reo=−100.0: �a� Mean of maxima
��� of the axial velocity vz�t ,L /2� is plotted as a measure of the
amplitude of SPI↓ and mean of minima ��� as a measure of the
amplitude of SPI↑. Basic flow ��� becomes convectively unstable
at Rec1 �dotted vertical line�, SPI↓ becomes absolutely unstable at
Rec2 �dashed vertical line�, and SPI↑ loses stability at Rec3 �solid
vertical line�. �b� Oscillation frequencies f of SPI↓ ��� and SPI↑
���.

FIG. 4. Stability diagrams of spiral Poiseuille flow for Reo

=−100: �a�, �b� Calculated convective �dotted line� and absolute
�solid line� linear instability of basic flow with respect to SPI↑ and
SPI↓ �linear stability analysis from Pinter et al. �24��. �a� Measure-
ments of the absolute instability border ��� of downstream propa-
gating SPI �↓ at ReD�0 and SPI↑ at ReD�0� that result from the
primary convective instability of the basic flow. �b� Lower instabil-
ity border ��� of upstream propagating SPI ↑ at ReD�0 and SPI↓
at ReD�0.
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the case of ReD�0—dotted line in Fig. 4�a�. The basic flow
state becomes absolutely unstable to one of these flow states
at higher Rei represented by the solid line in Fig. 4�a�. The
convective instability border of upstream propagating SPI↑
for ReD�0 and ↓ for ReD�0, respectively, is depicted as a
dotted line in Fig. 4�b�. Note that here the basic Couette-
Poiseuille flow is already convectively unstable towards
downstream propagating SPI �↑ for ReD�0 and ↓ for ReD
�0�. The Couette-Poiseuille flow becomes absolutely un-
stable to upstream propagating flow states at higher Rei rep-
resented by the solid line in Fig. 4�b�.

In the experiments we observe that by a quasistatistical
increase of Rei from subcritical values downstream propagat-
ing SPI �↓ for ReD�0 and ↑ for ReD�0� occur for all Rey-
nolds numbers −1.5�ReD�1.5 from a convective instabil-
ity of the basic flow and become absolutely unstable at
higher Rei. The experimentally determined absolute instabil-
ity border ��� of the downstream propagating SPI �more
precisely ↓ for ReD�0 and ↑ for ReD�0� is found to be in
qualitative agreement with the results from linear stability
analysis by Pinter et al. as shown in Fig. 4�a�. The critical
Reynolds numbers are obtained from experimental bifurca-
tion diagrams like the one shown in Fig. 3�a�.

In the experiments the convective instability border is
shifted generally towards higher Rei compared with the lin-
ear stability analysis of infinite systems due to the finite spa-
tial extent �25�. For reasons of clarity we have omitted the
experimental convective instability border in the stability
diagram shown in Fig. 4�a�.

Upstream propagating SPI �↑ for ReD�0 and ↓ for ReD
�0� are observed for all Reynolds numbers between −1.5
�ReD�1.5 but these flow states are stable only at a finite
distance from the primary critical Rei of the basic flow. The
experimentally determined lower instability border of up-
stream propagating SPI is depicted in Fig. 4�b� ���. It is
determined by a quasistatistical decrease of Rei towards the
critical Reynolds number Rec3 as demonstrated for ReD=
−1.5 in Fig. 3�a�. Upstream propagating SPI↓ are in the ab-
solute unstable regime since no �large� fluctuations in ampli-
tude and oscillation frequency can be found neither in time
series nor in the power spectrum. A comparison with results
from linear stability analysis, shown in Fig. 4, reveal that
upstream propagating SPI are stable in the experiments even
below their numerically calculated convective instability bor-
der. This provides experimental evidence that a secondary
subcritical Hopf bifurcation towards upstream propagating
SPI occurs from the �unstable� basic flow. Such a subcritical
Hopf bifurcation is not covered by the nondegenerate model
as shown in Eqs. �1� and �2� but only by a model of degen-
erate Hopf bifurcation with broken reflection symmetry �17�.
Furthermore, the observation indicates that the observed flow
states are always absolutely unstable since no convectively
unstable regime of upstream propagating SPI has been
found.

In general it can be seen from Fig. 4 that all experimen-
tally determined instability lines and the numerically calcu-
lated absolute instability line merge smoothly at ReD=0, i.e.,
the case of closed Taylor-Couette flow. Here, the critical Rei
of both SPI↓ and SPI↑ are identical �apart from small devia-
tions due to tiny imperfections in the apparatus� and convec-

tive instabilities do not occur. Note that the small difference
in the numerical values of convective and absolute instabili-
ties at ReD=0 is for numerical reasons �24�. The experimen-
tally determined bifurcation structure is in qualitative agree-
ment with predictions from theory and gives rise to the
conclusion that an additional through-flow can be modeled
by symmetry breaking imperfection terms added to the nor-
mal form of a Hopf bifurcation with O�2�-symmetry as pre-
sented for the nondegenerate case in Eqs. �1� and �2�.

Further evidence for this conclusion results from mea-
surements of the dependence of the oscillation frequency on
ReD as presented in Fig. 5. Since the oscillation frequencies
are found to be almost independent from Rei close to the
bifurcation, measurements on the dependence on ReD were
performed at Reo=−100 and Rei=109. The results are shown
in Fig. 5. It can be seen that the oscillation frequency of
downstream propagating SPI �↓ for ReD�0 and ↑ for ReD
�0� is always shifted towards higher frequencies compared
to those measured at ReD=0, i.e., the closed flow. On the
other hand, upstream propagating SPI �↑ for ReD�0 and ↓
for ReD�0� always have a lower frequency. It is of particu-
lar interest that the dependence of the oscillation frequency
of both SPI↓and SPI↑ on ReD is almost linear but with op-
posite slope and has identical values for ReD=0. Such a be-
havior is predicted by theory of Hopf bifurcation with broken
reflection symmetry �17� and by a model of Taylor-Couette
flow with an axial through-flow �19�.

D. Quasiperiodic flow

Models of imperfect bifurcations show generally more
complicated dynamics and bifurcation structures than models
of the corresponding symmetric bifurcation �16�. In particu-
lar symmetry breaking imperfections can be responsible for
new dynamics, such as, e.g., modulated waves or chaos, that
have no counterpart in the symmetric case. The theory of
O�2�-symmetric Hopf bifurcation with broken reflection
symmetry predicts a quasiperiodic state that results from a
superposition of traveling waves having different amplitudes
and frequencies �17�. Such a quasiperiodic flow has also

FIG. 5. Oscillation frequency f of SPI↑ ��� and SPI↓ ���
measured at Reo=−100.0 and Rei=109.0: In the presence of an
axial mean flow the frequency f of the primary downstream �sec-
ondary upstream� propagating SPI is increased �decreased� from the
frequency at ReD=0. The frequency shift of both SPI↑ and SPI↓
depends linearly on ReD.
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been predicted in a model of Taylor-Couette flow with an
additional through-flow �19�. In theory the quasiperiodic
flow state can appear from a secondary Hopf bifurcation of
the upstream propagating traveling wave, i.e., spiral vortices
�SPI� in the case of spiral Poiseuille flow.

In addition to that we found evidence for the existence of
such a quasiperiodic flow in the spiral Poiseuille flow experi-
ment. In Fig. 6�a�, a time series of the axial velocity compo-
nent vz recorded at Re�i,o,D�= �107.0,−100,−0.9� is depicted.
At slightly larger Rei the upstream propagating SPI↑ is
stable. But when the Reynolds number is decreased towards
Rei=107.0 this periodic flow becomes unstable and a quasi-
periodic flow appears. In the power spectrum from the time
series �a� which is depicted in Fig. 6�b� two fundamental
peaks are observed. Both peaks can be identified as the os-
cillation frequencies of SPI↑ and SPI↓. The quasiperiodic
flow is therefore characterized by a superposition of up-
stream and downstream propagating SPI, which is verified
by flow visualization. The quasiperiodic flow exists in the
experiments only as a transient of some minutes. A part of
the time series is plotted in Fig. 6�a�. A transition from this
quasiperiodic flow towards the primary downstream propa-
gating SPI↓ always occurs but after a �long� time.

IV. CONCLUSIONS

We have examined the effect of an imposed axial through-
flow on bifurcation structure of spiral vortices in counter-
rotating Taylor-Couette flow, i.e., in spiral Poiseuille flow.
Our work demonstrates that the resulting bifurcation struc-
ture in a sufficiently long spiral Poiseuille flow experiment
can be understood in terms of O�2�-symmetric Hopf bifurca-
tion with broken reflection symmetry.

We have observed that downstream propagating spiral
vortices appear always as a primary state from a Hopf bifur-
cation of the basic flow. This oscillatory regime splits up into
a convective and an absolute unstable regime. The border of
the absolute regime is found to be in quantitative agreement
with recent numerical results from �24�. Upstream propagat-
ing spiral vortices also exist as finite-amplitude solutions but
are observed only above a critical Rei which has a finite
distance to the primary Hopf bifurcation. This flow state is
found to lose stability to a �transient� quasiperiodic flow
which results from a superposition of SPI↑ and SPI↓. The
observed bifurcation structure is found to be symmetric with
respect to ReD and merges towards the symmetric case at
ReD=0. In the theory of Hopf bifurcation with broken reflec-
tion symmetry the influence of the finite length of an experi-
mental system, the existence of inflow and outflow bound-
aries, as well as the appearance of convective instabilities are
not considered. However, our experimental results provide
evidence that the effect of an imposed axial flow on the
bifurcation structure of spiral Poiseuille flow can be modeled
by a symmetry breaking imperfection in accordance with
theory for sufficiently long systems. The Reynolds number
ReD corresponds to the unfolding parameter of the imperfec-
tion in the normal form.

Thus the theory is robust and appropriate to describe ef-
fects of an imposed external flow on Hopf bifurcation with
O�2�-symmetry in fluid flow experiments.
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