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We present a new mechanism that allows the stable existence of domain walls between oppositely
traveling waves in pattern-forming systems far from onset. It involves a nonlinear mode coupling that
results directly from the nonlinearities in the underlying momentum balance. Our work provides the first
observation and explanation of such strongly nonlinearly driven domain walls that separate structured
states by a phase generating or annihilating defect. Furthermore, the influence of a symmetry breaking
externally imposed flow on the wave domains and the domain walls is studied. The results are obtained for
vortex waves in the Taylor-Couette system by combining numerical simulations of the full Navier-Stokes
equations and experimental measurements.
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Structured states appear spontaneously as a result of a
pattern-forming instability in a large variety of driven
nonequilibrium systems, e.g., in optics, chemical and bio-
logical models, polymer and binary mixtures, liquid crys-
tals, convection, and shear flow [1–3]. However, these
patterns are seldom globally ordered. Rather, there exist
patches, i.e., spatial domains with different order parame-
ters or symmetries of the structures. The formation of such
domains and their interaction via domain walls has often
been investigated close to onset. Then the amplitudes of the
order-parameter fields are small and slowly varying and the
spatiotemporal behavior of the system can be modeled
with Ginzburg-Landau equations (GLE).

Simple examples are 1D patterns of oppositely traveling
waves (TWs) [3–6] that appear, e.g., via a forward Hopf
bifurcation in systems with spatial translation and reflec-
tion symmetry. Also the domain walls between two such
TWs, i.e., their sources or sinks, are close to onset well
described by coupled GLE for the slowly varying ampli-
tudes of the two critical TW modes [7,8]—see, however,
the deviations at a larger distance from threshold in [4]. On
the other hand, 2D patterns allow defects and domains with
more complex spatiotemporal behavior. However, coupled
GLE or order-parameter equations that are based on the
critical modes of the patterns in question have been used
successfully also for these systems to model various as-
pects of their behavior [1–3,9–12].

Here we elucidate how walls separating domains of
waves that travel into opposite directions appear far from
onset by a strongly nonlinear balance of generalized forces.
This balance is dominated by a nonlinear mode coupling
that involves not only the two critical TW modes but, in
addition, also a third, stationary one, with different spatial
symmetry. Our investigation is performed in a Taylor-
Couette system since it allows quantitative comparisons
between experiment and numerical simulation of the full

Navier-Stokes equations (NSE) well beyond the first insta-
bility and also in the case of open flow.

System.—The system consists of two concentric coun-
terrotating cylinders (inner, outer radius r1;2; angular ve-
locities �1;2) with a fluid of kinematic viscosity � in the
gap between them. Lengths are scaled by the gap width
d � r2 � r1, velocities by �=d, and time by the diffusion
time � � d2=�. For numerical calculations of the velocity
field u � uer � ve’ � wez, which is governed by the
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FIG. 1 (color online). Visualization of a stable P� state in a
finite system: (a) azimuthal Fourier amplitudes jûm�z�j for m �
0 [thin (blue) line] andm � 1 [thick (red) line] at midgap; (b) 3D
visualization of u�’; z� at midgap (for visibility, the whole 2�
cylinder is displayed); (c),(d) two successive photographs of this
state in experiment. Parameters are R1 � 140 and Re � 0.
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NSE, a combined Galerkin and finite difference code is
used as described in [13]. In the experimental setup the
cylinder radii are r1 � �12:50� 0:01� mm and r2 �
�25:00� 0:01� mm. For measurements we used flow vis-
ualization and laser Doppler velocimetry (LDV) as de-
scribed in detail in [14]. Control parameters are the inner
and outer cylinder Reynolds numbers R1;2 � r1;2�1;2d=�
and the Reynolds number Re of the externally imposed
throughflow, which is given by the mean axial velocity hwi
(averaged over the annular cross section). In this Letter, the
radius ratio � � r1=r2 � 0:5, the aspect ratio � � 16, and
R2 � �125 are held constant.

Bifurcation behavior and domains.—For axially peri-
odic boundary conditions and sufficiently large R1, the
laminar Couette-Poiseuille flow (CPF) undergoes a transi-
tion to azimuthally rotating and axially traveling open
spiral vortices. Two types of such spiral TWs exist: left-
handed spirals (L-SPI) and right-handed spirals (R-SPI).
For Re � 0 they bifurcate forward out of the basic CPF at
R1 � 117:2 and neither of the two spiral types is preferred;
i.e., the initially selected type remains stable [13]. An
externally imposed axial throughflow breaks the axial mir-
ror symmetry and shifts the stability thresholds of the
spirals depending on their chirality [13,14].

When the system is axially bounded by rigid nonrotating
lids, there appear axisymmetric, toroidally closed Ekman
vortices close to these lids with amplitudes that decay
roughly exponentially into the bulk. Then spirals can oc-
cupy a bulk region that is delimited by two rotating defects
[15]. Each of them is located adjacent to the respective
Ekman vortex structure. These defects generate or annihi-
late the phase of the spirals in the bulk. The spatiotemporal
properties of these global spirals extending over the whole
bulk region between the rotating end defects are for suffi-
ciently large systems, as the one investigated here, similar
to axially periodic systems [14,15].

However, for rigid boundaries we found—in contrast to
periodic ones—that the above described stable global SPI
states can undergo a transition to a new stable state as R1 is
increased. This new state consists of two localized spirals
with different chirality: e.g., an upward traveling L-SPI in
the upper and a downward traveling R-SPI in the lower half
of the bulk being separated by a defect. After transients
have died out, this defect between the two TWs does not
propagate in axial direction and the flow state rotates
stationarily as a whole.

Plots of this flow state based on numerical calculations
and photographs of the experiment are shown in Fig. 1. A
snapshot in 1(b) visualizes the numerically obtained ra-
dial velocity field u over the whole 2� range of a cylin-
der surface at radial midgap. Amplitude profiles of the
axisymmetric mode jûm�0j and of the spiral mode jûm�1j
of u at midgap are plotted in Fig. 1(a) (m denotes the
azimuthal wave number of the respective mode). Fig-
ures 1(c) and 1(d) give two successive flow visualization

snapshots of this state in experiment, each presenting a
half-cylinder surface.

Defects and notation.—Since phase is generated in the
defect of Fig. 1, we call it a P� defect. It separates two
domains of spirals with different chirality, namely, a L-SPI
in the upper and a R-SPI in the lower part of the system.
Furthermore, we call the whole flow in such a configura-
tion a P� state for short. The phase that is generated in a
P� defect in the bulk is annihilated in Ekman-spiral defects
near the lids. In this Letter we discuss mainly this flow
state, but we also observed P� states with phase generating
Ekman-spiral defects and a phase annihilating defect in the
bulk. We found that real and imaginary parts of the com-
plex spiral amplitude ûm�1 vanish at each time in the P�
defect as well as in the Ekman-spiral defects; i.e., they are
of Ising type (as observed, e.g., in nematic liquid crystals or
reaction diffusion systems [16–18]).

The crucial difference between the defect of this new P�
state depicted in Fig. 1 and a plain superposition of fronts
of two critical, counterpropagating TW modes as in ‘‘clas-
sic’’ sinks or sources [8] is the coupling to a finite, non-
linearly driven m � 0 mode. The amplitude profile of this
mode near the defect can be seen from Fig. 1(a). Note that
the latter being rotational symmetric and stationary dis-
plays different spatiotemporal behavior than the two criti-
cal spiral TW modes. The local axial wave number of this
m � 0 vortex structure is about twice that of the spirals,
and its amplitude grows proportional to the product of the
spiral amplitudes. This is easily seen to be a consequence
of the Reynolds stresses that, e.g., the critical spiral modes
exert on the m � 0 flow in the defect region. Close to
onset, we did not find stable P� states since the amplitudes
of the two SPI modes need to reach a sufficient strength to
generate a stabilizing m � 0 mode via nonlinear coupling.

The P� states do not require the presence of lid gener-
ated Ekman vortices since P� defects exist also in periodic
systems. This we have numerically verified in simulations
of long systems with axially periodic boundary conditions.
In this case, the flow contains a stable pair of a phase
generating P� and a phase annihilating P� defect, which
partition the axial periodicity interval into a L-SPI and a R-
SPI domain. At each of the two domain walls the non-
linearly driven m � 0 mode appears as in rigidly bounded
annuli with a magnitude that is comparable to the spiral
mode’s amplitudes away from the defect. Furthermore, this
state is stable—the axial distance between the two defects
remains constant.

Spatiotemporal development of domains.—Starting with
a global spiral in the bulk as the initial condition and
increasing R1 beyond a certain threshold, domains of lo-
calized spirals with different chirality usually appear when
an Ekman-spiral defect splits up into two defects. The new
one then propagates into the global spiral state, thereby
unfolding a domain of opposite chirality. We found that the
transitions between different global and localized spirals
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are initiated by such propagating defects. These defects
either travel the whole way toward the other lid or they stop
at a fixed axial position inside the bulk depending on Re
and R1. The latter scenario is documented in Fig. 2. We
start [left side of Fig. 2(a)] with an upward propagating
global L-SPI for R1 � 140. This lies slightly above the
transition threshold to P� states so that the system evolves
into a stable P� state. First, a wavylike disturbance grows
near the bottom lid, which propagates into the bulk, and the
phase generating Ekman-spiral defect changes thereby to a
phase annihilating one. Then, the P� defect travels up to its
final position at midheight of the system. This final (stable)
state is temporally expanded in Fig. 2(b). Furthermore, we
found numerically that only phase differences of � � � or
0 between the spiral TWs are stable. Initial states with
other � values undergo a transition to defects with either
� � � or � � 0.

Figures 2(c)–2(e) show experimental time series of the
axial velocity w�z�t�; t� that are recorded by moving the
LDV measurement spot at fixed r � r1 � 0:11d and ’
with constant velocity wLDV along the path z�t� � wLDVt.
The plots represent the flow before 2(c) and after 2(d) the
appearance of the defect and the final P� state 2(e). Thin
lines refer to regions where w is basically constant in time.
In the spiral regions, on the other hand, many oscillation
periods of w are monitored with the small axial scan

velocity of wLDV � 0:16d=�. Thus, the experimental sig-
nal appears there, within the resolution of Figs. 2(c)–2(e),
as a broad black band.

Throughflow.—Starting from a stable P� state as initial
state and switching on external throughflow instantane-
ously, the P� defect begins to propagate downstream.
Thereby the R-SPI domain expands. The initial propaga-
tion velocity wd of this defect is illustrated in Fig. 3 show-
ing experimental (4) and numerical (�) results. As
expected, wd is proportional to Re, i.e., to the mean axial
flow. In the vicinity of a bulk P� defect, all Fourier modes
jûmj are constant in time in an axially with wd comoving
frame.

Numerical simulations showed that the velocity wd de-
creases when the defect approaches an axial end and, for
small throughflow (Re< 0:2), it stops at a certain axial
position inside the bulk, since the stationary Ekman struc-
ture becomes more dominant near the lids. Only suffi-
ciently large throughflow (Re> 0:2) is able to ‘‘blow‘‘
the defect out of the bulk. In that case, the final structure
is a global R-SPI.

Phase diagram.—Imposing an external axial through-
flow (which is vaguely analogous to applying an external
magnetic field in the case of magnetic domains) breaks the
symmetry degeneracy of the SPI solution. Hence, the Hopf
bifurcation to spirals splits up into a branch of downstream
propagating L-SPI, which bifurcates first, and into a branch
of upstream propagating R-SPI, which bifurcates at a
larger R1. Furthermore, the phase velocities of both spirals
are changed [13,14].

The numerically determined bifurcation thresholds of
L-SPI and R-SPI for periodic boundary conditions are
marked as a single thick line in Fig. 4 since the small
difference is not distinguishable for this resolution. It is
almost identical to the absolute instability threshold of
L-SPI for the control parameter regime considered here.
For positive throughflow, the bifurcation as well as the
absolute instability threshold for R-SPI lie slightly above
those of L-SPI but are not distinguishable from them for
the resolution in this figure [14,19].

Only stable states are depicted in the phase diagram of
Fig. 4; open (closed) symbols refer to experimental (nu-
merical) results. Stability boundaries were mostly deter-
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FIG. 2 (color online). Spatiotemporal behavior of a P� defect
propagating into a global L-SPI: (a),(b) numerically simulated
radial velocity field u�z; t� at midgap, (a) appearance near the
lower lid and upward propagation, (b) final state including the
P� defect; (c)–(e) temporal evolution of this state measured by
axial scans of (c) w before and (d) after the defect appearance
and (e) final P� state. Parameters are R1 � 140 and Re � 0.
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FIG. 3. Experimental (4) and numerical (�) axial propagation
velocity wd of a P� defect versus Re. Symbols describe its
velocity at midheight of the system for R1 � 140. The line is a
linear fit.
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mined by varying R1 quasistatically at fixed Re. However,
also selected Re scans at fixed R1 were done. For control
parameters in the shaded region, global L-SPI and global
R-SPI are bistable. The global R-SPI state loses stability
below the line marked by (5, �) and undergoes a tran-
sition to the global L-SPI state. Hence, for small R1, the
system prefers that spiral type, which is traveling down-
stream as in axially periodic systems [13]. On the other
hand, above the line marked by (4, �) the global L-SPI
state undergoes a transition to a global R-SPI (for Re *

0:2). In both cases the chirality of the spirals is changed via
a transient in which a P� (L-SPI to R-SPI) or a P� defect
(R-SPI to L-SPI) is generated at the lower Ekman-spiral
defect and then propagates downstream. In fact, the P�
(P�) defect always evolves out of the phase generating
(annihilating) Ekman-spiral defect, as described above.

For Re � 0, the two mirror-symmetric global spiral
states both undergo a transition to a P� state with the P�
defect at midheight when the driving is increased (quasi-
statically) beyond � � 0:17; cf. Fig. 4. With this protocol
we have observed neither P� defects nor P� states for
these parameters. This transition occurs when the phase
generating Ekman-spiral defect bounding the global L-SPI
(R-SPI) at the lower (upper) end emits a P� defect that
then moves into the center of the system.

For 0< Re & 0:2 and sufficiently large � the through-
flow is too small to blow such a P� defect out of the system
to induce a transition to a global R-SPI. Instead, the P�
defect moves here after its generation up- or downstream
(depending on the initial spiral type) away from the ends

into the bulk and remains there. This gives rise to stable but
typically asymmetric P� states above the line marked by
(�, �).

Conclusion.—A combined experimental and numerical
study has revealed far away from onset the spatiotemporal
and bifurcation behavior of nonlinearly driven domain
walls between oppositely traveling spiral waves of differ-
ent chirality. The extended states are separated by phase
generating or annihilating defects—both of Ising type. The
oppositely traveling spirals drive by nonlinear mode inter-
action within the domain wall a localized, stationary, rota-
tionally symmetric vortex mode. This nonlinear mode
coupling is a characteristic feature of the domain wall
and is essential for its robust existence. So, separated
domains of oppositely traveling waves can coexist stably
in pattern-forming systems even far from onset due to
strong nonlinear interactions.
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FIG. 4. Phase diagram of CPF, L-SPI, R-SPI, and P� states.
Open (closed) symbols denote experimental (numerical) results.
Stability regions are separated by thin lines to guide the eyes.
Upward (downward) oriented triangles identify transitions from
global L-SPI to global R-SPI (R-SPI to L-SPI), and circles a
transition from global L-SPI or R-SPI to stable P� states. The
vertical dotted thin line roughly indicates a boundary between
P� and global R-SPI states. The bottom solid, nearly horizontal
line represents the bifurcation threshold for SPI. In the range of
Re shown here, the thresholds for both spiral types fall together
for the given resolution. � � R1=R1;c � 1 with R1;c � 115
(R1;c � 117:2) in experiment (numerical) calculations. The R1

axis is based on the experimental R1;c.
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