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Abstract. Experimental realizations of Taylor-Couette flow often include rigid end plates at
bottom and top of the system. As a consequence of such end plates the bifurcation behavior of
the basic laminar flow as well as the spatio-temporal properties of the emerging pattern, such as
e.g. spiral vortex flow, can change. The latter point is in the focus of our present experimental
study. The spatio-temporal behavior of spiral vortex flow in a Taylor-Couette system with rigid
end plates is analyzed by a measurement technique based on Doppler-shift. This enables us to
determine the spatial amplitude profile of up- and downward propagating spiral vortices within
oscillatory flow states. Our study confirms experimentally recent numerical results of Hoffmann
et al. [1] on the spatio-temporal properties of the spiral vortex state in finite systems with rigid
end plates.

1. Introduction

The Taylor-Couette system is one of the classical systems for the study of bifurcation events
and nonlinear pattern formation [2–7]. It is the flow of a viscous fluid in the gap between two
concentric and independently rotating cylinders. Circular Couette flow (CCF) is the basic
laminar flow under the mathematical assumption of infinite axial length (or axial periodic
boundary conditions) of the system. It has a translational invariance and reflection symmetry in
axial as well as rotational invariance in azimuthal direction, i.e. the flow is invariant under the
group O(2)×SO(2) [7,8]. For sufficiently high rates of counter-rotation non-axisymmetric ’pure’
spiral vortices occur in CCF via a symmetry-breaking Hopf bifurcation with O(2) symmetry as
a result of linear instability [9,10]. These spirals are traveling waves in axial and rotating waves
in azimuthal direction and have an azimuthal wave number m = ±1 for the parameter values
considered here. Spiral vortices have been first theoretically calculated by Krueger et al. [11]
and experimentally observed by Snyder [12]. Experimental as well as combined numerical and
experimental studies on counter-rotating Taylor-Couette flow have been carried out by Andereck
et al. [13] and Langford et al. [10], respectively. In these studies spiral vortices have been observed
as first time-dependent pattern that appears from basic laminar flow for a wide range of counter-
rotation rates in systems with different radius ratios and axial length. Numerical studies on
spirals focusing on their nonlinear behavior have been performed by Sanchez et al. [14] and
Hoffmann et al. [15].

Non-rotating rigid end plates at top and bottom as often used in experimental systems
break the translational invariance. It has been predicted theoretically [16, 17] that a Hopf
bifurcation with broken translational invariance differ from its counterpart for infinite systems.
Due to broken translational invariance, standing waves (SW) appear supercritically instead
of spiral vortices. Spiral vortices arise exclusively super- or subcritically from a secondary
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steady bifurcation of the SW solutions. Experimental investigations on Taylor-Couette flow
reveal such a difference in the bifurcation behavior for sufficiently small aspect-ratios [18]. As
a further consequence non-rotating rigid end plates at top and bottom subcritically innervate
axisymmetric Ekman vortices in the annulus. Recent numerical simulations have shown that
’pure’ spiral vortices only exist in a bulk region which is bound by a ’wavy-like’ rotating defects
in the vicinity of the axisymmetric Ekman vortices near the end plates [1]. Spiral vortices in
finite systems are therefore predicted to differ qualitatively in their spatio-temporal properties
from ’pure’ spirals in infinite systems. An experimental investigation of the spatio-temporal
behavior of this flow state is the focus of the present work.

2. Experimental setup

The Reynolds number of the inner and the outer cylinder serve as control parameters Rei,o =
(ro − ri)ri,oΩi,o/ν, where Ωi,o,and ri,o denotes the angular velocity and radius of the inner (i)
and the outer (o) cylinder, respectively. The inner cylinder of the apparatus is machined from
stainless steel having a radius of ri = (12.50 ± 0.01) mm, while the outer cylinder is made from
optically polished glass with a radius of ro = (25.00 ± 0.01) mm. The gap width d between the
inner and outer cylinder is d = ro − ri = 12.5 mm. The working fluid is a silicone oil with a
kinematic viscosity ν = 10.6 cSt which is thermostatically controlled to (24.00 ± 0.01)◦C. The
flow is confined in axial direction by two rigid end plates having a distance L which defines
the axial length of the system. The dimensionless geometric parameters are the aspect ratio
Γ = L/d and the radius ratio η = ri/ro. In this study the radius ratio is held fixed at η = 0.5
and all of the measurements have been performed at Γ = 12 using flow visualization and Laser
Doppler velocimetry (LDV) for measurements of the local flow velocity. All LDV measurements
are recorded at a radial distance of 1 mm from the inner cylinder.

3. Results

In this work a measurement technique based on Doppler-shift is used in order to study the spatio-
temporal behavior of oscillatory flow states. This kind of measurements have been performed
by recording the axial velocity vz(t) of the flow by LDV while simultaneously moving the LDV
in axial direction from top to bottom. Thereby the axial position z(t) = vLDV t of the LDV is
given by the axial scan velocity vLDV and each data point represents a certain time t referring
to a distinct axial position z(t). Three of these so-called ’axial scans’ recorded from different
flow states are depicted in figure 1. Each of theses measurements represents a typical flow state
that appears in counter-rotating Taylor-Couette flow with rigid end plates. Reo is held constant
at −120.0 during all measurements presented here.

The axial scan in figure 1(a) has been recorded at Rei = 114.5 and is referred to basic flow.
The fact that the lines of this scan are thin (compared to the ones in (b) and (c)) denotes that
the flow is stationary. The Ekman vortices at bottom (left side) and top (right side) decay into
the bulk as typically observed for Reo = 0 [19, 20]. In the axial middle of the system the axial
velocity vz is zero. By increasing Rei above a critical value this stationary flow state becomes
unstable and a new flow state appears. An axial scan referring to this time dependent flow state
is depicted in figure 1(b). Especially at top and bottom the stationary Ekman vortex profile
is still visible as thin lines, but in addition to that an oscillation of the axial velocity can be
seen in the bulk of the system. Note, that this oscillation appears as broad black band in this
representation due to the small scan velocity (vLDV = 0.1 mm/s).

Within the oscillatory regime in the bulk also nodal point are visible in this axial scan. In
these nodal points, the axial velocity vz is constant which is a strong indicator for SW [21]. In
(c) an axial scan referring to downward traveling spiral vortices is depicted. The Ekman vortices
at bottom and top are still visible and appear as thin line in this scan. In contrast to the axial
scan in (b) the nodal points have disappeared in the bulk and due to the oscillation as well

15th International Couette-Taylor Workshop IOP Publishing
Journal of Physics: Conference Series 137 (2008) 012004 doi:10.1088/1742-6596/137/1/012004

2



as the above mentioned small scan velocity a broad black band appears. This band includes
(almost) constant amplitude especially in the vicinity of axial mid height.
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Figure 1. Axial scans of three different flow states recorded at Reo = −120.0: (a) basic flow at
Rei = 114.5, (b) standing waves (SW) at Rei = 115.3 and (c) downward traveling spiral (R-SPI)
at Rei = 120.4.

This sequence of states is typically observed in the parameter regime considered here as a part
of a bifurcation scenario [22]. Apart from basic flow each time-dependent flow state, e.g., SW
and spirals, will be studied in the following by separating dominant frequencies from each other
in the power spectrum which appear due to the Doppler-shift based measurement technique.
This separation procedure will be presented in detail in the following and is a suitable method
for analyzing the spatio-temporal behavior of the oscillatory flow.

The axial scan of SW (shown also in figure1(b)) is again depicted in figure 2(a). Additionally
to that, the power spectrum of this scan is displayed in (c). Beside one peak at lower frequencies
(fEk ≈ 0.02 Hz) which belongs to the Ekman vortex structure two other frequency peaks are
visible in the spectrum. These peaks correspond to the up- and downward traveling spiral modes
respectively. Both peaks are identical for the case that the LDV measurement volume is held
fixed at a constant axial position, but due to the axial motion of the LDV apparatus from top
to bottom each frequency is Doppler-shifted toward either a higher or a lower frequency. The
frequency of the upward traveling L-SPI-mode (blue dashed line) is shifted toward higher whereas
the downward traveling R-SPI-mode (red dashed line) is shifted toward lower frequencies. The
difference between these two frequencies is directly related to the axial velocity of the LDV
measurement system. Note, that the Ekman vortices are stationary (no oscillation) and the
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corresponding frequency peak in (c) simply reflects the axial motion of the LDV measurement
volume. The result of a (narrow) bandpass-filtering of the two spiral mode frequencies can be
seen in figure 2(b). For reasons of clarity both signals are artificially separated by an offset from
zero, e.g., −1.0 for L-SPI-mode (blue) and +1.0 for R-SPI-mode (red). Additionally propagation
directions of both spiral modes are indicated by two white arrows in this plot. The amplitude of
each spiral mode, estimated by the bandpass-filtered axial scan, is similarly distributed over the
whole bulk of the system. Here the amplitudes of both spiral modes are not exactly equal as it
would be expected for SW. However, slightly asymmetric SW can appear within the transition
sequence from SW to spiral vortices [16,17,23]. This behavior is also in agreement with recent
results of numerical simulation of the Navier-Stokes equation by Hoffmann et al. [1].
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Figure 2. (a) Axial scan of a standing wave (SW) recorded at Reo = −120.0 and Rei =
115.3, (b) spatially resolved bandpass-filtered scan of (a) red: R-SPI-mode (0.360 − 0.378 Hz,
offset:+1.0) and blue: L-SPI-mode (0.378 − 0.400 Hz, offset:−1.0) and (c) power spectrum of
(a) - the lines mark the corresponding frequencies in (b).

Analogue to the analysis of SW, also the axial scan of a downward traveling spirals R-SPI(as
already shown in figure 1(c)) is analyzed in the following. The axial scan of this flow state is
depicted in figure 3(a) and the power spectrum of this scan is shown in (c). In addition to the
frequency peak of the Ekman vortex structure (fEk ≈ 0.02 Hz) also the double peak for up-
(L-SPI-mode: blue dashed line) and downward traveling spiral modes (R-SPI-mode: red dashed
line) exist. As discussed above this double peak is observed due to the Doppler-shift which
results of the axial motion of the LDV system during this measurement, e.g., frequency peak of
the downward (upward) traveling spiral mode is shifted to lower (higher) frequencies.
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Figure 3. (a) Axial scan of a downward traveling spiral (R-SPI) recorded at Reo = −120.0
and Rei = 120.0, (b) spatially resolved bandpass-filtered scan of (a) red: R-SPI-mode
(0.350 − 0.371 Hz, offset:+2.0) and blue: L-SPI-mode (0.371 − 0.390 Hz, offset:−2.0) and (c)
power spectrum of (a) - the lines mark the corresponding frequencies in (b).

This implies that not only the downward traveling R-SPI-mode but also the upward traveling
L-SPI-mode exists in this flow state. This is also verified in the bandpass-filtered scans for both
spiral modes, that are depicted in (b). For reasons of clarity both bandpass-filtered axial scans
are artificially separated by an offset, e.g., R-SPI-mode (red – offset:+2.0) and L-SPI-mode:
(blue – offset:−2.0). The black arrows additionally indicate the axial propagation direction of
each spiral mode. As expected, the amplitude of R-SPI-mode is dominant in the bulk, whereas
the amplitude of L-SPI-mode is nearly zero in this region. But the amplitudes of both types
of spiral modes are almost equal in the vicinity of the end plates and decay directly at the end
plates. Especially at the bottom end plate, where the phase of R-SPI-mode is annihilated, the
amplitudes of both modes are almost equal and form together with the Ekman vortex structure
a ’wavy-like’ flow in this regime as numerically observed by Hoffmann et al. [1]. This structure
can even be observed in (a) and a nodal point, as typically observed for SW, exist at z ≈ 3d.
This dynamical behavior differs systematically from that of ’pure’ spirals in Taylor-Couette flow
with axial periodic boundary conditions (or infinite length) but is in qualitative agreement with
recent numerical simulation of the Navier-Stokes equation considering rigid end plates [1].

Not only the downward traveling R-SPI but also the upward traveling L-SPI exist in counter-
rotating Taylor-Couette flow and can appear from SW by (spontaneous) breaking of the reflection
symmetry. In figure 4(a) and (c) axial scans of both coexisting spirals are depicted, e.g., the
upward traveling L-SPI (a) and the downward traveling R-SPI (c). The propagation direction
is schematically indicated by the arrows in each plot. In addition to that also parts of the
corresponding power spectra are depicted in (b) for L-SPI and in (d) for R-SPI. In both spectra
the typical double peaks of the spiral modes are visible. In each case (L-SPI (a) or R-SPI (c))
either the higher peak corresponding to L-SPI-mode or the lower one of R-SPI-mode has more
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spectral power density, e.g., in (b) the peak of L-SPI-mode and in (d) the R-SPI-mode peak is
larger. Note, that by applying a point reflection in the axial middle of the system (z = 6d) both
axial scans can be converted into each other.
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Figure 4. Axial scans of oppositely traveling spirals measured at Reo = −125.0 and
Rei = −120.0: (a) upward traveling spiral L-SPI and (c) downward traveling spiral R-SPI and
power spectra of (a) and (c) are depicted in (b) for L-SPI (a) and (d) for R-SPI (c). The red
(blue) dashed line indicates the peak of R-SPI-mode (L-SPI-mode).

4. Conclusions

In this experimental study we have analyzed the spatio-temporal behavior of different oscillatory
states that occur in the bifurcation sequences from basic flow via standing waves to spiral vortex
flow in counter-rotating Taylor-Couette flow with rigid end plates. The behavior of each flow
state is analyzed experimentally by using a measurement technique that is based on Doppler-
shifted signals of axial scans. This technique allows us to decompose the oscillatory flow into
axially traveling waves, here up- and downward traveling spirals, and yield a spatial amplitude
distribution of each type of traveling wave. We found that spirals in experimental Taylor-
Couette systems with rigid end plates consist of both types of ’pure’ spiral modes, i.e. up- and
downward traveling spirals, having similar amplitudes near each end plate but with one type
dominating in the bulk of the system. The results are in qualitative agreement with theoretical
considerations [16,17] and recent numerical Navier-Stokes simulations [1].
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