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Abstract. The results of an experimental study on intermittent spiral vortices observed in
a counter-rotating Taylor-Couette system with an additional axial through flow, i.e. Spiral-
Poiseuille flow, are presented. Convectively unstable upstream propagating spiral vortices
appear in the laminar basic flow from an oscillatory instability and in general become absolutely
unstable at higher inner cylinder Reynolds number. It is found that at Reynolds numbers
above the absolute stability border the spiral vortices become unstable and a complex flow
state showing intermittent bursts appears. The intermittent flow state is characterised by an
irregular alternation between clearly distinguishable ’laminar’ phases corresponding to up- and
downstream propagating spiral vortices as well as propagating Taylor vortices. For a sufficiently
high rate of axial through flow it is found that intermittency can occur directly from the
convectively unstable regime of the upstream propagating spiral vortices.

1. Introduction

Taylor-Couette flow is a classical hydrodynamic system for the study of bifurcation events and
the transition to turbulence [1, 2, 3]. It is the flow of a viscous liquid between two concentric
coaxial rotating cylinders. In the classical setup the flow is confined in axial direction by solid
end plates. This defines an aspect ratio Γ = L

d
, i.e. the ratio of axial length L to the gap width

d between the cylinders. It has become apparent in wide variety of studies that breaking the
reflection symmetry with respect to the axial midplane of this closed hydrodynamic system is
of fundamental importance for the organisation of complex dynamics in the flow [4, 5]. As one
consequence of the additional axial through flow the character of the Taylor-Couette system
changes from a closed to an open hydrodynamic system. In open systems generally the concept
of convective and absolute stability plays a crucial role. For the Taylor-Couette system with
stationary outer cylinder the convective and absolute stability boundaries have been determined
numerically in [6, 7] and experimentally in [8, 9, 10]. Theoretical and numerical investigations
on convective and absolute stability of spiral vortices which appear in Taylor-Couette flow from
the primary instability in basic laminar flow in case of counter-rotating cylinders have been
performed by [11, 12, 13, 14]. Experimentally the convective and absolute stability boundary
of counter-rotating Taylor-Couette flow have been determined recently in [15]. As a further
consequence of an additional axial through flow in the Taylor-Couette system the reflection
symmetry of the flow is broken by an external perturbation. Studies on the organisation of
complex nonlinear dynamics in open Taylor-Couette flow are much rare than in the closed
counterpart and only performed in case of stationary outer cylinder so far. A linear stability
analysis of the flow for several values of the rotation rate ratio between inner and outer cylinder
has been investigated by Cotrell and Pearlstein [16] as well as by Meseguer and Marques [17].



However, Tsamaret and Steinberg [18], Lueptow et al. [9] and Bühler and Polifke [19] observed
complex spatiotemporal dynamics in the nonlinear regime of this open flow in case of stationary
outer cylinder. Furthermore several flow states such as non-wavy or wavy vortices as well as
non-wavy or wavy helical vortices and random wavy vortices have been measured by Particle
image velocimetry by Wereley and Lueptow [20], verified by numerical calculations of Hwang
and Yang [21], for the case of stationary outer cylinder. In this study we present results from an
experimental study on nonlinear dynamics of open Taylor-Couette flow in the case of counter-
rotating cylinders, i.e. of spiral Poiseuille flow. We focus on the stability of spiral vortices
that appear for a sufficiently large rate of counter-rotation as the primary pattern from a Hopf-
bifurcation of the basic laminar flow.

2. Experimental Setup

The experimental setup consists of a viscous fluid confined in the gap between two independently
rotating concentric cylinders. The inner cylinder is made of stainless steel having a radius of
ri = (12.50 ± 0.01) mm. The outer cylinder consists of optically polished glass with a radius of
ro = (25.00±0.01) mm. As a working fluid silicone oil with the kinematic viscosity ν = 11.2 cSt
is used. To ensure this value of kinematic viscosity to be constant within the accuracy for all
measurements the temperature of the fluid is thermostatically controlled at (24.00 ± 0.01)oC.
At top and bottom the fluid is confined by end plates which are held fixed in the laboratory
frame. The end plates have a matrix of holes in a way that an axial through flow is enabled and
radial and azimuthal velocity components of the through flow are avoided. They have identical
shape to guarantee reflection symmetry of the system and the distance between them defines the
axial length L of the flow which is adjustable within an accuracy of 0.01 mm up to a maximal
axial length of 610 mm. Geometric parameters are the aspect ratio Γ = L

d
, held fixed for all

measurements at Γ = 22.8, with a gap width d = ro − ri, and a radius ratio η = ri

ro
which

is also held fixed to η = 0.5 for all measurements. As control parameters serve the Reynolds

number of the inner (i) and outer (o) cylinder, Rei,o =
dri,oΩi,o

ν
, where Ωi,o denote the rotation

rates of the inner (i) and outer (o) cylinder, respectively. The Reynolds number of the axial
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Figure 1. (a) Schematic plot of the experimental setup and (b) measured (◦) and analytically
calculated (solid line) velocity profile of the axial through flow at ReD = 1.5 recorded at a
distance of 12.5 mm from the inlet.



through flow is defined by ReD = d<v>
ν

, where < v > denotes the mean axial velocity. The
axial through flow is enabled in both directions from the bottom up and from top down and its
size is variable at 0.1 ≤ ReD ≤ 40. A schematic plot of the Taylor-Couette system with axial
through flow is shown in figure 1 (a). We utilised Laser Doppler velocimetry (LDV) for the
measurements of the flow velocity. The measured velocity profile (◦) is in good agreement with
the analytically calculated Poiseuille profile, in particular even at a distance of 12.5 mm from
the inlet, as illustrated in figure 1 (b). All following measurements of the axial flow velocity are
recorded at the radial distance of 1.3 mm from the inner cylinder and an axial height of 160
mm. In addition flow visualisation has been done in order to determine the spatial pattern of
the flow. For typical flow pattern of Spiral-Poiseuille flow see figure 2.

3. Results

As shown recently by Langenberg et al. [15] a reasonable agreement with respect to the
convective stability boundary and a good agreement with the absolute stability boundary of
spiral vortices in counter-rotating Taylor-Couette flow can be found between numerics [12] and
experiments. The spiral vortices, that appear as the primary pattern from a Hopf-bifurcation
at sufficiently low rate of through flow, always propagate upstream, i.e. in the direction of the
external through flow. However, downstream propagating spiral vortices as well as propagating
Taylor vortices are also observed in counter-rotating Taylor-Couette flow with axial through
flow. In order to characterise the different flow states photographs from a laser light-sheet
measurement in the (r,z)-plane of upstream- as well as downstream propagating sprirals are
depicted in figure 2 (a) and (b). Here, the axial through flow is directed from the left to the
right. All photographs are recorded in the axial middle of the system with Γ = 22.8. The
photos in figure 2 (a) and (b) are obtained at Rei = 130 and Reo = −100 but at different
through flow Reynolds numbers ReD = −1.5 for SPI↑ (a) and ReD = +1.5 for SPI↓ (b). The
third photograph, depicted in figure 2 (c) is recorded at Rei = 110, Reo = -50 and ReD = +3.0.
The particles added to the flow have a diameter of 8 µm and have been used for both LDV and
flow visualisation with a laser light-sheet.

(a) SPI (b) SPI¯

inner cylinder

outer cylinder

axial through flow

(c) PTV

Figure 2. Photographs from a laser light-sheet measurement in the (r,z)-plane of the flow in
the axial midplane: (a) upstream propagating spirals (SPI↑) for ReD = −1.5, b) downstream
propagating spirals (SPI↓) for ReD = +1.5 both recorded at Rei = 130 and Reo = −100 and (c)
propagating Taylor vortices (PTV) measured at Rei = 110, Reo = −50 and ReD = +3.0.

In the nonlinear regime of the flow above the absolute stability boundary of upstream
propagating spirals (SPI↑) a complex phenomena of stability exchange could be observed for
certain Reynolds numbers of through flow ReD. An irregular spatial as well as temporal



alternation of different flow states, like propagating Taylor vortices (PTV), up- (SPI↑) and
downstream propagating spirals (SPI↓), is one of the representative characteristics of the flow
in this regime. A time series of the axial velocity, which is recorded after a transient of 12
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Figure 3. (a) Typical bursts taken from ’intermittent’ time series. An alternation of ’laminar’
phases of propagating Taylor vortices (PTV) as well as upstream (SPI↑) and downstream
propagating spirals (SPI↓) occurs. The time series is recorded at Rei = 125, Reo = −100
and ReD = 3.75. (b) Histogram of relative frequency vs. length of oscillation period obtained
from total intermittent time series. The total recording time is approximately 24 hours after a
transient of 12 hours.

hours, is depicted in figure 3 (a). This time series has a length of 670 s, whereas all control
parameters are held fixed, i.e. Rei = 125, Reo = −100 and ReD = 3.75 for the whole recording
time. The intermittent character of the flow is obvious from figure 3 (a). Three different
types of oscillations can be distinguished already by eye from the time series in figure 3 (a)
alternating irregularly between these three oscillatory regimes. Detailed investigations of the
flow regime by simultaneous flow visualisation and LDV measurements allow a unique distinction
between the different flow regimes. In this particular example SPI↓ occurs for about 80 s, then
replaced by PTV for approximately 300 s, sequencing SPI↑ for about 40 s and PTV again for
170 s, and finally interrupted by SPI↑. The oscillation periods can be measured and three
different flow regimes can be classified on a quantitative basis by a histogram of the frequency
of oscillation period. One example is illustrated in figure 3 (b). The oscillation periods have
been computed considering the angle of the Hilbert-transformation of the time series. Classical
methods like Fourier-transformation are less practical because of the partially short-time phases
of the different flow regimes. The oscillation periods of SPI↑ is smallest with about 2.4 s and
SPI↑ do occur with lowest frequency (1 %) in the flow. SPI↓ is clearly distinguishable from SPI↑
and results in a very narrow but high peak centred around 3.9 s. This results from a frequent
occurrence of this flow regime in this flow state. In contrast the peak of period of PTV is much
wider than the SPI↓-peak but lower and is located around 10.5 s. Nevertheless, as already
indicated by the time series in figure 3 (a) PTV also occur quite frequently in the flow but with
a much less determined oscillation period. It can be concluded that the intermittent flow state
is characterised by an irregular alternation between ’laminar’ phases of SPI↑ , SPI↓ , and PTV.



In particular since other periods, not related to these three flow regimes, could not be observed.
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Figure 4. Stability diagram for numerically (dotted line, from [12]) and experimentally (•)
determined convective instability of basic laminar Couette-Poiseuille flow (CPF); numerically
(solid line, from [12]) and experimentally (◦) determined absolute stability boundary of SPI↑ ;
experimentally determined transition to intermittency (⋄). Points (a), (b) and (c) refer to time
series shown in figure 5.

Intermittent flow states like the one characterised by time series shown in figure 3 (a) can
be observed in a wide parameter regime of this hydrodynamic system. The stability diagram of
SPI↑ at Γ = 22.8 and Reo = −100 in the (Rei, ReD)-plane is shown in figure 4. In the figure the
dotted line represents the numerically calculated convective stability boundary for cylinders with
an infinite axial length [12]. Here, the basic Couette-Poiseuille flow (CPF) becomes convectively
unstable and SPI↑ appears under the assumption of infinite axial length. The convective stability
boundary in the experiment (•) is taken to be the lowest value of inner cylinder Reynolds
number Rei, where the frequency peak of the upstream propagating spirals is detectable in the
power spectrum. The deviation between experimentally determined and numerically calculated
stability lines is related to the systematic difference between experiment and numerics resulting
from the finite length of the experimental system (see [15]). The absolute stability boundary
which appear for higher Rei has been calculated numerically for the case of infinite axial length of
the cylinders (solid line) by [12]. It has been confirmed experimentally between 3.5 ≤ ReD ≤ 5.3
(◦). For Reynolds number 5.3 < ReD ≤ 6.0 the absolute stability boundary is superseded by
a direct transition from convective SPI↑ to intermittency (dashed line, ⋄). A transition to
intermittency is observed for the entire parameter regime 3.5 ≤ ReD ≤ 6 shown in figure 4 but



in case of ReD ≤ 5.3 this transition is above the absolute stability boundary of SPI↑. Three
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Figure 5. Typical time series with corresponding power spectra recorded at Reo = −100
and ReD = 6.00: (a) convective unstable SPI↑ (Rei = 108.57), intermittency (b) below
(Rei = 114.93) and (c) above (Rei = 118.91) the numerically determined absolute stability
boundary of SPI↑ .

different time series, recorded all at Reo = −100 and ReD = 6.0, and corresponding power
spectra are depicted in figure 5. They have been measured at different Reynolds numbers of the
inner cylinder Rei representing the three different flow regimes. Their locations in the stability
diagram are indicated by (a), (b) and (c) in figure 4. The time series in figure 5 (a) has been
measured at Rei = 108.57 from a convective unstable flow regime (see [15]). In particular
a peak of SPI↑ can be observed at 0.55 Hz in the corresponding power spectrum, broadened
in comparison to a typical peak measured in the absolutely unstable regime. In figure 5 (b)
bursts can be observed in time series recorded at Rei = 114.93 which is below the numerically
calculated absolute stability boundary. From the corresponding power spectrum a broadened
peak at 0.22 Hz additional to the 0.55 Hz peak from SPI↑ can be observed. Due to the large
through flow (ReD = 6.0) the frequency of SPI↓ and of PTV have shifted to 0.05 Hz and to
0.22 Hz, respectively. Therefore the bursting can be related to short periods of PTV-bursts
alternating with relatively long periods of SPI↑. In addition to this sidebands can be observed
in the corresponding power spectrum. These sidebands are the result of the almost periodic
but still irregular alternation of PTV- and SPI↑-phases in this regime. This alternation has a
frequency of 0.014 Hz, which corresponds to a period of approx. 71 s. Note that the phases



of SPI↑ are almost periodic, but irregular for PTV. Above the numerically calculated absolute
stability boundary the flow is still characterised by an intermittent alternation between SPI↑
and PTV, which is not periodic at all. The irregular behaviour of intermittency in this regime
can be seen from the time series depicted in figure 5 (c) as well as from the corresponding power
spectrum with its broadband character and the broadened peaks of PTV and SPI↑.

4. Conclusions

In counter-rotating Taylor-Couette flow with axial through flow, i.e. in spiral Poiseuille flow,
the experimentally determined transition from the basic laminar flow to upstream propagating
spirals (SPI↑) is in reasonable agreement for convective and in good agreement for the absolute
stability boundary with the numerical calculations (see also [12, 15]) as long as the ReD is
sufficiently low (ReD ≤ 5.3). In this study we have shown experimentally that above this
particular rate of through flow the absolute stability boundary of upstream propagating SPI↑
can be superseded by a transition to intermittency. The intermittent flow state is observed
in a wide parameter range of Rei and ReD but for ReD ≤ 5.3 the transition occurs only well
above the absolute stability boundary of SPI↑. The intermittent flow is characterised by an
irregular alternation between up- and downstream propagating spirals as well as propagating
Taylor vortices. The observed intermittent flow state and the exchange between the absolute
stability and the intermittency illustrates the complex nonlinear dynamics of spiral Poiseuille
flow and will be subject of further research.
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