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Abstract. Two different types of standing waves (SW0 and SWπ) can appear instead of
spiral vortices from a supercritical Hopf bifurcation in counter-rotating Taylor-Couette flow for
sufficiently small aspect ratios [1,2]. The bifurcation sequence from basic flow to spiral vortices
via SW0 can include modulated waves, homoclinic bifurcations, and hysteresis as a consequence
of broken translational invariance [3]. Here we show that the same kind of sequence can also
occur for the other type of standing wave, i.e., SWπ. Furthermore we show that SWπ can
exist also up to much larger inner Reynolds numbers than is has been found for SW0. Far
from onset SWπ can undergo bifurcation sequences that differs qualitatively from those close
to onset. These sequences involve a supercritical symmetry breaking as well as a supercritical
Hopf bifurcation towards a new type of modulated wave.

1. Introduction

Spiral vortices can appear from linear instability of circular Couette flow (CCF) in the annulus
between two rotating cylinders [4–6]. CCF is the basic laminar flow of the Taylor-Couette
system, one of the classical hydrodynamic systems for the study of bifurcation events [7–9]. It
is invariant under axial translations and reflection and under azimuthal rotation, i.e., invariant
under the group O(2) × SO(2) [6, 10]. Spiral vortices are traveling waves in axial and rotating
waves in azimuthal direction which break these symmetries (they have an azimuthal wave number
m = ±1 for the parameter values considered here). Their bifurcation behavior from CCF can
be understood from a Hopf bifurcation with O(2) symmetry [5, 6, 10, 11].

Spiral vortices have been first calculated theoretically by Krueger et al. [12] and observed
experimentally by Snyder [13]. Subsequent experimental and numerical studies on spiral vortices
have been carried out by Andereck et al. [14], Langford et al. [11] as well as Sanchez et al. [15]
and Hoffmann et al. [16], respectively, in a wide Reynolds number regime for different radius
and aspect ratios.

Non-rotating rigid end plates at top and bottom as often used in experimental systems
change the properties of spirals in counter-rotating Taylor-Couette flow due to the presence of
rotating defects in the vicinity of the axisymmetric Ekman vortices near the end plates [16].
As a consequence of broken translational invariance in experimental systems two different types
of standing waves (denoted SW0 and SWπ) are found to replace spiral vortices as the primary
pattern that occur from a supercritical Hopf bifurcation of the basic laminar flow [1,2]. This has
been predicted theoretically by Dangelmayr and Knobloch [17] and Landsberg and Knobloch [18]
in a theory of Hopf bifurcation with broken translational invariance. Both types differ in the kind
of reflection symmetry, i.e., SW0 has a spatial while SWπ has a spatio-temporal glide reflection
symmetry.
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The theoretically predicted bifurcation sequence involves secondary steady super- or
subcritical bifurcations towards spiral vortices as well as more complex bifurcation sequences
involving a secondary Hopf bifurcation towards modulated waves, homoclinic bifurcations, a
Takens-Bogdanov point, and hysteresis. While the former part has been observed in experiments
for both types of standing waves, i.e., SW0 and SWπ [1, 2], the latter point has only been
investigated for SW0 [3]. In this work we focus on higher bifurcations from the other type of
standing wave in counter-rotating Taylor-Couette flow, i.e., SWπ.

2. Experimental setup

A Taylor-Couette apparatus with counter-rotating cylinders and non-rotating end plates is used
for this study, as described in [1–3]. The inner cylinder of the apparatus is machined from
stainless steel having a radius of ri = (12.50 ± 0.01) mm, while the outer cylinder is made
from optically polished glass with a radius of ro = (25.00 ± 0.01) mm. The flow is confined
in the axial direction by non-rotating end plates at top and bottom separated by a distance
L which defines the axial length of the system. Geometric parameters of the system are the
aspect ratio Γ = L/d, with gap width d = ro − ri, and the radius ratio η = ri/ro = 0.5.
The Reynolds number of the inner (i) and the outer (o) cylinder serve as control parameters
Rei,o = dri,oΩi,o/ν, where Ωi,o denotes the angular velocity of the inner (i) and the outer (o)
cylinder, respectively. Thermostatically controlled silicone oil ((24.00 ± 0.01)◦C) is used as a
working fluid with a kinematic viscosity ν = 10.8 cSt. Spatial and temporal properties of the
velocity field are determined by local measurements of a axial velocity using Laser-Doppler
velocimeter (LDV). The LDV measurement volume has a distance of 1.5 mm from the inner
cylinder and is either located at a fixed axial position or moves at constant speed along a path
z(t) in axial direction during the measurements. The latter procedure yields an axial scan which
allows a spatio-temporal characterization of stationary flow states.

3. Results

3.1. SWπ close to onset
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Figure 1. Stability diagram of counter-rotating Taylor-Couette flow for Γ = 7.3: Transition
from basic flow to spiral vortices SPI (�, red dashed line) close to onset via a sequence of standing
waves SW0 (•) or SWπ (◦) and modulated waves (?, blue solid line) – hysteresis regime of SPI
is marked by (4, blue dashed line).
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SW0 appears from basic flow instead of spiral vortices from a supercritical Hopf bifurcation as
a consequence of linear instability of the basic laminar flow. Spiral vortices can occur from
SW0 at slightly higher Rei directly from a super- or subcritical symmetry breaking bifurcation.
However, a more complex bifurcation sequence of SW0 can occur involving a secondary Hopf
bifurcation to modulated waves and a homoclinic bifurcation both resulting from a Takens-
Bogdanov point [3, 17, 18]. The latter scenario is depicted in figure 1 for SW0 (•) but it also
occurs for SWπ (◦) close to onset (here aspect ratio is Γ = 7.3). Modulated wave (?) appear from
both types of SW and the flow undergoes a homoclinic bifurcation (�) towards spiral vortices at
higher Rei. The hysteresis regime of spiral vortices is marked by (4). Note, that the transition
between SW0 and SWπ involves a cusp point which is not resolved in figure 1 [1]. It can be
seen that qualitatively the same bifurcation scenario can be found for SWπ close to onset as it
has been studied in detail for SW0 in [3]. Here the entire transition from basic flow to spirals
occurs within a few Rei. However, there are parameter regimes where SWπ is found to be stable
up to much larger Reynolds numbers. Such a regime is indicated for Γ = 7.3 in figure 1 at
Reo ∼< −147.

3.2. SWπ far from onset

(a) (b) (c) (d) (e) (g) (h)(  )f (i)
Re=113 Re=116 Re=118 Re=140Re=128 Re=148 Re=155 Re=159 Re=162

Figure 2. Axial scans of (a) basic flow (Rei = 113), (b,c,d,e) SWπ (Rei = 116, 118, 128, 140),
(f) asymmetric SWπ (Rei = 148), (g) modulated SWπ (Rei = 155), (h) chaotic flow (Rei = 159),
and (i) Taylor vortex flow (Rei = 162) recorded at Reo = −125 and Γ = 5.7.

An axial scan of the basic laminar flow and SWπ at sub- and slightly supercritical Rei are
shown in figure 2(a) and (b), respectively. They are recorded at Reo = −125 and Γ = 5.7. For
this aspect ratio Γ a large regime of stable SWπ is found. The sequence of axial scans of SWπ

depicted in figure 2(b)-(e) indicates such a large regime at Rei = 116 . . . 140. Note that the
amplitude of SWπ does not increase monotonically with Rei and has a local minimum at about
Rei = 128, corresponding to the axial scan in figure 2(d). It will be shown in the following that
this behavior is due to the stability properties of SWπ at Γ = 5.7 (see discussion of stability
diagram in figure 3 below). The spatio-temporal reflection symmetry of SWπ is broken at higher
Rei and an asymmetric SWπ state appears. Such a flow state is recorded at Rei = 148 and is
plotted in figure 2(f). In figure 2(g) an axial scan of an asymmetric modulated SWπ is depicted
(Rei = 155). This flow state becomes chaotic at higher Reynolds number (see figure 2(h) for
axial scan at Rei = 159) and finally undergoes a hysteretic transition to steady Taylor vortex
flow (Rei = 162, figure 2(i)) towards higher Rei.

The axial scans depicted in figure 2 are all recorded at Reo = −125. The dependence of
this sequence on Reo can be seen from the stability diagram shown in figure 3. The Reynolds
numbers corresponding to the flow states from figure 2 are marked in figure 3 along the vertical
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dashed line at Reo = −125. The supercritical Hopf bifurcation curve from basic laminar flow to
SWπ (green curve) exhibits a notch at Rei ≈ 130. This notch is responsible for the reduction
in amplitude observed in the sequence in figure 2(c)-(e) for Reo = −125 since the distance
from the vertical path with fixed Reo to the Hopf bifurcation curve shrinks again due to the
notch. However, between Reo ≈ −140 . . . − 120 stable SWπ exists for about ∆Rei ≈ 40. This
regime is larger than that found for SW0 in [1–3]. For outer Reynolds numbers Reo ≥ −100 a
continuous transition to Taylor vortex flow (TVF) occurs since the bifurcation is destroyed due
to the presence of rigid end plates at top and bottom.
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Figure 3. Stability diagram at Γ = 5.7: (•, green line) Hopf bifurcation to SWπ, (◦, yellow
line) breaking of reflection symmetry, (2, blue line) onset of modulation, (?, red line) onset of
chaos, and (4, dashed green line) hysteretic transition to Taylor vortex flow. The labels along
the vertical dashed line at Re0 = −125 mark the Reynolds numbers of the corresponding flow
states shown in figure 2.

The standing wave SWπ breaks its spatio-temporal reflection symmetry slightly below
Rei ≈ 150 as indicated by the yellow curve in figure 3, via a supercritical asymmetric bifurcation.
Furthermore a modulation appears from a second Hopf bifurcation which is marked by a
blue curve in figure 3. Axial scans of these flow states are shown in figure 2 (f) and (g),
respectively. The Hopf and symmetry-breaking bifurcation curves can cross at a certain Reo and
the modulation can occur either at lower or higher Rei than the symmetry breaking, depending
on Reo. The modulated symmetric and asymmetric SW can become chaotic at higher Rei

(red curve in figure 3) and finally undergoes a hysteretic transition to Taylor vortex flow with
eight cells at the dashed green curve in figure 3. This bifurcation sequence differs substantially
from those found close to onset for both SW0 and SWπ. At onset the reflection symmetry is
either broken by a super- or a subcritical bifurcation. The subcritical bifurcation is part of
a Takens-Bogdanov scenario which can include also a supercritical Hopf bifurcation towards
modulated waves. Away from onset, a supercritical symmetry breaking can appear together
with a supercritical Hopf bifurcation toward modulated waves.
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Figure 4. (a) Oscillation frequencies of SWπ (•) and modulations (◦) versus Rei at Γ = 5.7
and Reo = −107, (b) frequency ratio versus Rei.

A typical dependence of the modulation frequency on Rei is depicted in figure 4(a) for
Reo = −107, i.e., in the regime of symmetric modulated SWπ. The modulation frequency is
around fmod ≈ 0.1 Hz in our experiments and therefore a factor of 2.5 to 5 smaller than the
frequency of SW. The latter have a frequency of about fSWπ

≈ 0.35 Hz which is typical for
the experimental configuration used here (see e.g., [1]). The exact frequency ratio is given in
figure 4(b). The ratio decreases since the modulation frequency increases with Rei while the
frequency of SW is almost constant with Rei. The frequency of the modulation that appears
further away from onset is therefore an order of magnitude larger than the one close to onset [3].
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Figure 5. Time series (left), phase space reconstruction (middle), and Poincaré section (right)
of typical flow states in the regime of symmetric modulated SW at Γ = 5.7 and Reo = −107:
(a) quasi periodic flow at Rei = 134.1, (b) chaotic flow at Rei = 146.7.

Dynamical characteristics, such as time series, phase space reconstruction, and Poincaré
sections, of the modulated SW recorded in the (a) quasi periodic and in the (b) chaotic regime
are depicted in figure 5. The flow in the quasi periodic regime, such as that represented in (a) for
Rei = 134.1, evolves on a T 2-torus. Since the ratio of frequencies decreases with Rei, as indicated
in figure 4(b), also commensurable ratios of frequencies must exist for certain Rei. Such flow

states are indeed observed, e.g., for
fSWπ

fmod
= 4

1
, 7

2
, 3

1
at Rei = 136.9, 140.0, 144.4, where the flow

forms a limit cycle. However, within a resolution of ∆Rei = 0.1, there is no clear evidence that
both frequencies lock at these ratios since no plateau is found (see figure 4(b)). At higher Rei,
e.g., Rei = 146.7, the T 2-torus breaks up and a chaotic state appears. Characteristics of this
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flow are shown in figure 5(b). Since only peaks related to the two modes are found in the power
spectrum there is no evidence for a further mode but for nonlinear coupling of these two modes.

4. Conclusions

We have experimentally investigated the bifurcation behavior of one type of standing wave SWπ

that appears instead of spiral vortices in counter rotating Taylor-Couette flow for sufficiently
small aspect ratios. In previous studies [1, 2] the appearance and the primary bifurcation of
SWπ and of another type of standing wave, i.e., SW0, have been investigated. Both types
of standing waves appear in principle instead of spiral vortices as a consequence of broken
translational invariance of the experimental system [17,18]. More complex bifurcation behavior
in the sequence from basic flow to spiral vortex flow including modulated standing waves,
homoclinic bifurcations, and hysteresis has been found for SW0 [3]. This has also been predicted
from bifurcation theory [17,18]. In this work we have presented experimental results that reveal
the same bifurcation sequence to appear for SWπ, close to onset. Therefore the theoretically
predicted bifurcation sequence is not limited to one type of standing wave in the experiment but
is generally applicable to both types of SW.

Furthermore we found that SWπ can be stable in some parameter regimes up to much larger
Rei. While the transition from basic flow to spiral vortex flow typically occurs within a few
Rei (see [2, 3]) a stability interval of several tens of Rei could be found for SWπ. Further
away from onset we found a supercritical symmetry breaking bifurcation as it is also observed
close to onset but additionally we found a new type of modulated standing wave. This state
originates from another supercritical Hopf bifurcation for both symmetric and asymmetric SWπ

with a frequency of an order of magnitude larger than the modulation found close to onset [3].
Therefore the bifurcation behavior of SWπ far from onset can substantially differ from the one
close to onset.
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