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A Hopf bifurcation with translational invariance has been widely considered as an appropriate model for the
appearance of spiral vortices in counter-rotating Taylor-Couette flow. Our experimental work demonstrates that
flow conditions close to the axial boundaries are responsible for the type of bifurcation scenario, i.e., either
asymmetric pure traveling waves or more complex behavior, such as defect states or symmetric mixed states
appearing from a Hopf bifurcation. The measurements were performed in the first Taylor-Couette experiment
with independently rotating endwalls confining the system in axial direction. The rotation rate of the �synchro-
nous� endwalls is found to be an essential control parameter for the spatial amplitude distribution of the
traveling waves and also reflects symmetry of the corresponding flow pattern appearing from the Hopf
bifurcation.
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A realistic description of symmetry-breaking bifurcation
events in a nonlinear extended system also includes
symmetry-breaking imperfections as they are unavoidable in
any physical realization �1,2�. A typical example arises from
imperfections in reflection symmetric systems as they can be
sufficiently captured by imperfect terms in pitchfork as well
as in gluing bifurcations. Translational invariance is often
assumed in a mathematical model of a bifurcation event in
physical systems but it cannot be realized in an experimental
system. As a typical example for a Hopf bifurcation with
translational invariance serves the onset of spiral vortices in
circular Couette flow �CCF� as a result of a linear instability
�3–6�. CCF is the basic laminar state of Taylor-Couette flow,
i.e., the flow of a viscous fluid in the gap between two con-
centric independently rotating cylinders, under the assump-
tion of axial translational invariance �7�. In this case spiral
vortices are traveling waves in axial and rotating waves in
azimuthal directions �5,8�. More recently, it has been re-
vealed that generic effects such as a Hopf bifurcation with
broken translational symmetry appear �9,10�. In finite sys-
tems, i.e., experimental Taylor-Couette flow is typically con-
fined by rigid axial endwalls, the translational invariance is
always broken. However, observations of either upward or
downward propagating spirals �SPIs� as the primary pattern
have been interpreted in accordance with a Hopf bifurcation
in counter- rotating CCF �6,11,12�. Numerous studies con-
sider axial endwalls either as attached to the outer cylinder
�see, e.g., �11–14�� or as nonrotating endwalls �see, e.g.,
�15,16��. Endwalls attached either to the outer or the inner
cylinder was found to have influence on the stability of the
flow �17�. Especially nonrotating endwalls subcritically in-
nervate axisymmetric Ekman vortices in the annulus, leading
to more complicated primary pattern consisting of both SPI
structures, i.e., a left-handed spiral �L-SPI� and a right-
handed spiral �R-SPI�, in the bulk accompanied with defects
near the Ekman vortices in the vicinity of the endwalls ap-
pears �16,18�.

I. SYSTEM

The experimental setup consists of two concentric rotat-
ing cylinders �radii r1,2; rotation rates �1,2� with a silicone
oil of kinematic viscosity �=10.6 cS as working fluid in the
gap �d=r2−r1� between them. The inner cylinder of the ap-
paratus is machined from stainless steel having a radius of
r1= �12.50�0.01� mm, while the outer cylinder is made
from optically polished glass with a radius of r2
= �25.00�0.01� mm. The temperature of the working fluid
is thermostatically controlled to �24.00�0.01� °C. At top
and bottom, the fluid is confined by solid endwalls with a tilt
of each plate being better than 0.03 mm. The endwalls are
mechanically coupled to each other and therefore rotate syn-
chronously. With a phase-locked-loop control, an accuracy of
10−4�10−7� in the short �long� term average is achieved for
the rotation rates of both cylinders and endwalls. Control
parameters are the inner and the outer cylinder Reynolds
numbers R1,2=r1,2d�1,2 /� and additionally the Reynolds
number of the endwalls defined as Re=r2d�e /�. Geometric
parameters are the aspect ratio �=L /d and the radius ratio
�=r1 /r2=0.5. All lengths are scaled by the gap width d,
times as well as frequencies by the diffusion time �=d2 /�
and velocities by d /�. Throughout this Rapid Communica-
tion R2�=−120� as well as ��=16� are held constant. How-
ever also measurements near these values have been
performed.

II. MEASUREMENT TECHNIQUE

We utilize laser Doppler velocimetry �LDV� for measure-
ments of the radial �u� and axial �w� velocity locally at any
position �r ,z ,�� within the flow domain. The measurements
in this Rapid Communication have been performed at a fixed
radial and azimuthal position �r ,�� while simultaneously
axially moving the LDV at a constant speed wLDV within the
time t, i.e., each data point represents a certain time t refer-
ring to a distinct axial position z�t�. The corresponding
evaluation algorithm is based on the occurring Doppler-shift
using a bandpass filter that allows us to study the spatiotem-
poral behavior of stationary and oscillatory flow. In particu-*heise@physik.uni-kiel.de
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lar the �narrow� bandpass filtering of the so-called “axial
scans” allows us to decompose the �spatial� time series into
stationary pattern and axially traveling waves, e.g., axisym-
metric Ekman vortices and nonaxisymmetric spiral vortices
�see �19� for details�.

III. SPIRAL STRUCTURE

Two characteristic examples of axial scans and the subse-
quent Doppler-based bandpass decomposition is depicted in
Fig. 1. The axial scans and spatial amplitudes of spiral struc-
tures in the case of corotation, i.e., the endwalls and the inner
cylinder rotate in the same direction, are depicted in Figs.
1�a� and 1�c�. The axial scan in Fig. 1�a� reflects the super-
position of a temporally stationary spatial pattern and a tem-
porally oscillatory spatial pattern. The temporally stationary
pattern appears as a peak in the power spectrum of the axial
scan at a frequency given by the ratio between the speed of
the LDV measurement position and the wavelength of the
stationary spatial pattern. The other peaks corresponding to
upward propagating L-SPI and downward propagating R-SPI
patterns are slightly separated due to the Doppler shift
caused by the downward-moving LDV measurement posi-
tion. Once the proper frequencies are determined from the
power spectrum, a narrow-band filter can be applied to sepa-
rate the stationary Ekman profile �red �gray� line in Fig. 1�a��
and the two countermoving spiral patterns �colored lines in
Fig. 1�c��. The spatial amplitude of the upward propagating
L-SPI �azimuthal wave number m=+1� is indicated by solid
blue �dark gray� line and the downward propagating R-SPI
�m=−1� is indicated by dashed green �light gray� line. Note
that these spatial amplitudes are estimated by the envelope of
the bandpass filtered axial scan. Additionally the propagation

of the phase of each spiral in axial direction is indicated by
the dashed and solid colored arrows, i.e., the phase propa-
gates from the endwalls into the bulk. The upward propagat-
ing L-SPI mode is mainly located near the lower lid, whereas
R-SPI is localized at the upper. In the bulk of the system no
spiral amplitude is present. As is common for all type of
spirals observed in counter-rotating Taylor-Couette flow until
now, the defects near the both endwalls include an axisym-
metric �m=0� mode on the one hand and both spiral modes
�m= �1� on the other hand �16,18�.

Figures 1�b� and 1�d� show a different spiral structure
observed when the endwalls and the outer cylinder are hav-
ing the same rotation rate, i.e., Re=R2=−120, both counter
rotating to the inner cylinder �R1=116�. For these parameters
a pure �either upward or downward propagating� spiral
mode, here L-SPI appears from Hopf bifurcation breaking
the reflection symmetry of the flow. The main feature of this
flow is the absence of the so-called Ekman spiral defects near
the endwalls �20�, where the corresponding other spiral
mode, i.e., R-SPI�m=−1�, is zero in this case.

Figure 2 depicts the radial velocity amplitude distribu-
tions of the spirals u�m�=1 for the three different Re each re-
sulting from successive axial scans of the radial velocity at
26 different radial positions in the gap between the counter-
rotating cylinders. These three diagrams illustrate the spiral
amplitude of the flow for three characteristic Re values, i.e.,
zero, a negative and a positive value. To allow comparison
between these results R1 is always one Reynolds number
above onset. The blue �dark gray� color represents a high
amplitude, whereas white represents an amplitude of zero.
Additionally the propagation of the phase of each spiral in
axial direction is additionally indicated by the solid �L-SPI�
and dashed �R-SPI� colored arrows.

The distribution depicted in Fig. 2�a� represents the case
of stationary endwalls. It results from an upward traveling
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FIG. 1. �Color online� ��a� and �b�� Axial scans of two different
spiral structures both recorded at R2=−120 including the stationary
part of the flow as red �gray� line. ��c� and �d�� Spatial amplitudes of
each spiral mode L-SPI plotted as solid blue �dark gray� and R-SPI
in dashed green �light gray� line both extracted by bandpass filtering
from the corresponding axial scan in �a� and �b�, respectively. The
propagation direction of the corresponding spiral mode is indicated
by the colored arrows. Parameters are R1=113 and Re=60 in �a�
and �c� and R1=116 and Re=−120 in �b� and �d�.
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FIG. 2. �Color online� Experimentally determined radial veloc-
ity amplitudes of the spirals u�m�=1 in the �r ,z� plane at three differ-
ent Re, i.e., �a� stationary �Re=0 , R1=116�, �b� negative �Re

=−120, R1=116�, and �c� positive �Re=+60, R1=113�. The blue
�dark gray� color represents a high amplitude, whereas white repre-
sents an amplitude of zero. The propagation of the phase of each
spiral in axial direction is additionally indicated by the dashed
�R-SPI� and solid �L-SPI� colored arrows.
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L-SPI breaking the reflection symmetry of the flow espe-
cially in the bulk. Note that the respective state with a down-
ward traveling spiral has also been observed. The radial am-
plitude of the spiral is dominant in the bulk of the system and
disappears near both endwalls. However, also the distribution
is asymmetric because the Ekman spiral defects occur at
each end with phase generation and annihilation at top and
bottom, respectively. These defects include an axisymmetric
Ekman induced mode as well the amplitude of both nonaxi-
symmetric spiral modes �L-SPI and R-SPI�. The distribution
illustrated in Fig. 2�b� is recorded at Re=−120, i.e., for the
corotating case as partly shown in Figs. 1�b� and 1�d� and
results also from an upward traveling L-SPI. The amplitude
is spatially distributed over the entire gap but the maximum
is located in the axial midplane of the system while it is
decreasing toward the upper and lower lids. Due to the phase
propagation of the spiral from bottom to top the flow is
asymmetric in axial direction but the amplitude distribution
is almost symmetric. Note that in contrast to the distribution
in Fig. 2�a� the R-SPI mode is not existent near the endwalls
or the bulk.

The spiral structure can change qualitatively in the case of
positive Re as the amplitude distribution in Fig. 2�c� illus-
trates. The main difference with respect to the other two
distributions is the symmetric appearance of amplitude in the
vicinity of both endwalls. Moreover, at the upper lid R-SPI
appears whereas at the lower one L-SPI, i.e., the reflection
symmetry of the flow is preserved. Hence Re thereby serves
as control parameter to either break or preserve this reflec-
tion symmetry of the Hopf bifurcation.

IV. BIFURCATION BEHAVIOR

In order to characterize the transition from basic flow to
the spirals, an experimental bifurcation diagram is displayed
in Fig. 3�a� for Re=120. As a measure for the bifurcation
event the squared spiral amplitude �w�m�=1�2 is plotted versus
R1. Each point � � � results from the mean amplitude of a time
series which is recorded at the axial middle of the system and
a radial distance of 0.2d from the inner cylinder. During the
scenario R1 is quasistatically increased in steps of 	R1=0.2
and each time series has a length of 22�. The onset of the
corresponding spiral �vertical dashed line� and a linear fit
considering the amplitude values above the corresponding
onset �solid line� are indicated in this plot. Together with a
finite oscillation frequency the linear relationship between
the squared spiral amplitude �w�m�=1�2 with respect to R1 the
transition to the spirals can be characterized in form of a
supercritical Hopf bifurcation. This bifurcation behavior has
also been proofed for other Re and does not change qualita-
tively in the parameter regime considered here �−130
Re

+130�.

In Fig. 3�b� an experimentally determined stability dia-
gram of the basic flow is depicted, where the inner Reynolds
number R1 for the onset of the spiral is plotted versus Re. The
onset of the spirals �� and solid line� as well as the critical
R1,c=115.03 resulting from linear stability analysis of CCF
�dashed line� is included in this diagram. It is in excellent
agreement for the onset of the spirals in particular for sta-

tionary and negative values of Re. Also for positive Re it is in
good agreement but within the interval Re �+44
Re
+76�,
where a significant difference between the values resulting
from linear stability analysis is visible with the lowest value
at R1=110.6, i.e., 	R1�5 below linear instability of CCF. In
Fig. 3�c� the experimentally determined oscillation frequen-
cies of the spirals � � � are plotted versus Re. For comparison
also the oscillation frequency resulting from linear stability
of CCF �f lin� is indicated as dashed line. They vary only
slightly with Re and the one obtained from experiment are in
very good agreement ��1%� to the one from linear stability
analysis.

V. FLOW NEAR ENDWALLS

In order to understand the differences in flow pattern
above onset it is essential to characterize the basic flow
slightly below. Thus the radial and the axial velocity fields
�u ,w� in the �r ,z� plane together with the color coded axial
velocity field of the spiral structure is depicted in Fig. 4 for
three different Re slightly below the respective onset of spi-
rals �	R1=1�. Note that due to the symmetry of the basis
flow only the lower half of the flow domain is depicted.

The measurement of the basic flow for stationary end-
walls �Re=0 , R1=114� is shown in Fig. 4�a�. An axial col-
umn of three vortices located near the lower endwall are
visible is this measurement. The amplitude of those Ekman
induced vortices decreases with respect to the distance to the
lower endwall. That behavior is in agreement with previous
results including an inward directed flow at the lower end-
wall �19�. For negative Re, i.e., in the same direction as the
outer cylinder, �Re=−120, R1=114� the character of the ba-
sic flow changes qualitatively. Just one single large vortex is
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FIG. 3. �a� Bifurcation diagram recorded at R2=−120,
Re=+120, and r=r1+0.2d in the axial middle of the system. The
squared spiral amplitude �w�m�=1�2 is plotted versus R1. The onsets
of the spiral is indicated by the vertical dashed lines and the solid
lines are a linear fit of the oscillation amplitude above onset. �b�
Stability diagram of the basic flow with respect to Re. The markers
� � � indicate the onset of the oscillatory flow in experiment and the
solid line connects these measured values to guide the eyes. In
addition to that the critical R1,c resulting from linear stability analy-
sis for the case of infinite long cylinders is plotted as dashed line.
�c� Oscillation frequencies at onset � � � versus R1.
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visible in the corresponding measurement in Fig. 4�b�. It can
be seen that the flow is directed downward at the inner and
upward at the outer cylinder and therefore directed outward
at the lower �and the upper� endwall. For positive Re, i.e., in
the opposite direction as the outer cylinder, �Re=+60, R1
=109� in Fig. 4�c� the behavior reverses with respect to the

counter-rotating case: an inward directed flow at the end-
walls occurs whereby the flow is directed upward at the inner
and downward at the outer cylinder in the lower half of the
cylinder. Moreover, the vortex structure differs to the one
presented in �a� as only a single vortex instead of a column
of small vortices exists.

VI. CONCLUSION

Our experimental study revealed the influence of endwalls
rotation on the type of spiral flows appearing from the Hopf
bifurcation in counter rotating Taylor-Couette flow. In par-
ticular we have shown that rotating endwalls retain the Hopf
bifurcation of the basic flow but significantly alter the ap-
pearing flow pattern. Depending on Re either pure spirals or
more complicated mixed spiral flow pattern appear. Those
mixed states either keep or break the reflection symmetry of
the system and may contain defects. Therefore we conclude
that the flow conditions near the endwalls determine Hopf
bifurcation scenario in counter-rotating Taylor-Couette flow
and thereby serves as a further control parameter allowing us
to unfold the bifurcation, i.e., the rotation rate of the �syn-
chronously� rotating endwalls.
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FIG. 4. �Color online� Experimentally measured radial �u� and
axial �w� velocity field together with the color coded axial velocity
w �blue �dark gray� represents a positive value, whereas green �light
gray� represents a negative one� in the �r ,z� plane for the basic flow
at three different Re, i.e., �a� stationary �Re=0 , R1=114�, �b� nega-
tive �Re=−120, R1=114�, and �c� positive �Re=+60, R1=109�.
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