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Stable domain walls which are realized by a defect between oppositely traveling spiral waves in a pattern-
forming hydrodynamic system, i.e., Taylor-Couette flow, are studied numerically as well as experimentally. A
nonlinear mode coupling resulting from the nonlinearities in the underlying momentum balance is found to be
essential for the stability of the defects. These nonlinearly driven defects separate spiral domains and act either
as a phase generating or annihilating defect. Specific phase differences of either 0 or � between the partici-
pating traveling waves are a characteristic feature of this defect. The influence of a symmetry breaking
externally imposed flow on the spiral domains and the defects is studied. The numerical and experimental
results are in excellent agreement.
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I. INTRODUCTION

Structured states appear spontaneously as a result of a
pattern-forming instability in a large variety of driven non-
equilibrium systems, e.g., in optics, chemical and biological
models, polymer and binary mixtures, liquid crystals, con-
vection, and shear flow �1–3�. However, also patches, i.e.,
spatial domains with different order parameters or symme-
tries of the structures, exist in these systems. The formation
of such domains and their interaction via domain walls
which are realized via defects has often been investigated
close to onset.

Simple examples are one-dimensional �1D� patterns of
oppositely traveling waves �TW� �3–6� that appear, e.g., via
a forward Hopf bifurcation in systems with spatial transla-
tion and reflection symmetry. Also the defects between two
such TW, i.e., their sources or sinks are close to onset de-
scribed by coupled Ginzburg-Landau equations for slowly
varying amplitudes of the two critical TW modes �7,8�—see,
however, the deviations at larger distance from threshold in
�4�. On the other hand, two-dimensional �2D� patterns allow
defects and domains with more complex spatiotemporal be-
havior. However, coupled Ginzburg-Landau equations or
order-parameter equations that are based on the critical
modes of the pattern in question have been used successfully
also for these systems to model various aspects of their be-
havior �1–3,9–12�.

One of the classical systems for the study of bifurcation
events and nonlinear pattern formation is the Taylor-Couette
system, i.e., the flow of a viscous fluid in the gap between
two concentric and independently rotating cylinders �13,14�.
It is one of the best controllable hydrodynamic systems and
allows quantitative comparisons between experiments and
numerical simulations of the Navier-Stokes equations even
beyond the first instability. In the axial periodic or infinite
Taylor-Couette system, upwards and downwards traveling
spirals �SPI� appear via a symmetry breaking Hopf bifurca-
tion out of the circular Couette flow �CCF�.

On the other hand, finite systems—e.g., in experimental
setups—are typically confined by nonrotating rigid end
walls, thus, the translational invariance is broken. These end
walls at top and bottom subcritically drive axisymmetric Ek-
man vortices in the annulus. As a consequence, spiral vorti-
ces only exist in a bulk region bounded by “wavylike” rotat-
ing defects in the vicinity of the axisymmetric Ekman
vortices near the ends. These Ekman-spiral defects can be
classified into two types: phase generating and annihilating
defects. Thus, spirals in finite systems differ in their spa-
tiotemporal properties from those spirals in infinite systems
�15,16�. However, in the finite case, the transition to upwards
and downwards traveling spirals has also been understood as
Hopf bifurcation �17–19�.

In a recent letter �20�, we pointed out the existence of
nonlinear defects between two axially separated domains of
spiral waves traveling into opposite directions. So far, we
investigated phase generating spiral-spiral defects which are
stabilized by a strongly nonlinear balance of generalized
forces.

Here, a more comprehensive study �in the finite and the
axial periodic system� of phase generating and, in particular,
annihilating spiral-spiral defects as well as the analysis of the
amplitudes and the phase differences between the participat-
ing traveling spirals is performed using experimental and
numerical methods. Further, we investigate the stability of
states consisting of domains of different �axially localized�
spiral waves separated by spiral-spiral defects.

II. SYSTEM

The system consists of two concentric, independently ro-
tating cylinders �inner, outer radius r1,2 angular velocities
�1,2� with a fluid of kinematic viscosity � in the gap between
them. Lengths are scaled by the gap width d=r2−r1, time by
the diffusion time �=d2 /� and the velocities by d /�. Control
parameters are the inner and outer cylinder Reynolds num-
bers,

R1 = r1�1d/�, R2 = r2�2d/� , �1�

and the Reynolds number Re of the externally imposed axial
through flow given by the mean axial velocity �w�r,� aver-
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aged over the annular cross section. Geometric parameters
are the aspect ratio �=L /d and the radius ratio �=r1 /r2.
Throughout this article, the radius ratio �=0.5, the aspect
ratio �=16 �for the case of a finite system�, and R2=−125
�except for Fig. 1� are held constant.

A. Numerical method

The flow is governed by the Navier-Stokes equations
�NSEs� for incompressible fluids �� ·u=0�,

�tu = �2u − �u · �� · u − �p . �2�

Using cylindrical coordinates, we decompose the velocity
field u=uer+ve�+wez into a radial component u, an azi-
muthal one v, and an axial one w. For numerical calcula-
tions, we used the G1D3 code, a combination of a Galerkin
method in azimuthal direction �Eq. �3�� and finite differences
in axial and radial direction as well as in time. We used
homogeneous grids with discretization lengths 	r=	z
=0.05 for the four fields u, v, w, and the pressure p which are
arranged on staggered grids so that they do not fall together
with discontinuities in the corners. In azimuthal direction
eight Fourier modes are used. See �15� for more details. At
the axial ends, rigid boundary conditions were imposed in
order to simulate nonrotating lids.

The velocity fields are decomposed into azimuthal Fourier
modes �m� as

f�r,�,z� = �
m

fm�r,z�ei�m��, f � �u,v,w,p	 . �3�

For diagnostic of the numerically/experimentally obtained
fields, we also considered an additional axial Fourier mode
�n� decomposition

f�r,�,z� = �
m,n

fm,n�r�ei�m�+nkz�, f � �u,v,w,p	 . �4�

The mode amplitudes 
um
 and 
um,n
 at midgap are used as
order parameters in the following.

B. Experimental setup

In our experiments the temperature of the fluid is thermo-
statically controlled to �24.00
0.01� °C. Silicone oil with a
kinematic viscosity �=10.6 cS is used as working fluid. The
inner cylinder of the apparatus is machined from stainless
steel having a radius of r1= �12.50
0.01� mm, while the
outer cylinder is made from optically polished glass with a
radius of r2= �25.00
0.01� mm. At top and at bottom, the
fluid is confined by massive end walls and the tilt of each
wall is better that 0.03 mm at the outer diameter. For the case
of an additional axial through flow the massive walls are
systematically perforated in order to enable mass flow in
axial direction. Size and distribution of the small holes in the
end wall are carefully chosen in order to enable an inlet flow
profile that is as similar as possible to axisymmetric Poi-
seuille flow. The end walls are designed in a way to avoid the
azimuthal velocity component of the axial through flow at
the inlet.

We utilize laser Doppler velocimetry �LDV� for measure-
ments of the local radial and axial velocity of the flow. In this
work, two different LDV measurement techniques are used.
The first method measures the velocity component u or w at
a fixed position �r ,� ,z�. The second one is an axial scan of u
or w moving the LDV with constant velocity in z at fixed r
and �. In order to study the complete spatiotemporal behav-
ior of the flow, sequential axial scans are performed for u and
w.

For flow visualization purposes, aluminum flakes with a
length of 80 �m are added to the fluid. Flow visualization
measurements are performed by monitoring the system with
a charge-coupled device camera in front of the cylinder re-
cording the luminosity along a narrow axial stripe. The spa-
tiotemporal behavior of the flow is then represented by suc-
cessive stripes for each time step at a constant � position
leading to continuous space time plots.

III. DEFECTS IN FINITE SYSTEMS

As discussed above, in a finite system global spiral vorti-
ces only exist in the bulk region between two rotating
Ekman-spiral defects that are located in the vicinity of the
nonrotating rigid end walls. Since traveling waves �spirals�
transport phase either upwards �L-SPI� or downwards �R-
SPI�, the phase in a finite system has to be generated in one
defect and annihilated in the other. Thus, an L-SPI �R-SPI� in
a finite system has a phase generating �annihilating� Ekman-
spiral defect at the bottom and a phase annihilating �gener-
ating� one at the top.

Furthermore, in finite systems, we observed—in experi-
ments as well as in simulations—stable, stationary states
with adjacent domains of spirals with different chirality that
interact either in a phase generating or annihilating defect
which are located somewhere in the bulk. These spiral-spiral
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FIG. 1. �Color online� Three-dimensional �3D� visualization of
u�� ,z� at midgap �for better visibility, the whole 2� cylinder is
displayed�. The flow in �a� contains a phase generating defect �P+�
at midheight, the flow in �b� a phase annihilating defect �P−�. In
each case the phase difference at the defect location is �=� �see
below�. Phase propagation is indicated by white arrows. Parameters
are �=0.5, �=12, R1=118, and R2=−100.
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defects differ from the Ekman-spiral defects due to the inter-
action of two spirals, L-SPI and R-SPI, instead of one spiral
and the axisymmetric Ekman mode. The simplest case of a
defect with two spirals—a localized L-SPI in one half of the
system and a localized R-SPI in the other half—is depicted
in two different realizations in Fig. 1.

The P+ defect in the axial middle of the system in Fig.
1�a� acts as a phase �P� generating �+� defect for both spirals.
The phase of each localized spiral is annihilated in the re-
spective Ekman-spiral defect at the end walls. In �b�, on the
other hand, the Ekman-spiral defects generate phase which is
annihilated �−� in a so-called P− defect in the axial middle.
The structure of these defect regions is stable and rotates as a
whole with the same speed as the spirals. The P+ and P−
states, as discussed so far, are schematically depicted in Figs.
2�a� and 2�b� as isolines of maximal �thick colored lines� and
minimal �thin colored lines� radial velocity u�� ,z� at midgap
plotted in the �� ,z� plane of an unrolled cylinder. The type of
defect is indicated by plus signs for phase generation and
minus signs for phase annihilation in these plots. Note, that
the phase shift � between both spirals is always �, which
implies that �at the defect� the maximal u of the L-SPI coin-
cide with the minimal u of the R-SPI and vice versa. The
presence of Ekman vortices near the top and the bottom is
indicated by the thick black horizontal lines.

In axial periodic systems, on the other hand, simultaneous
occurrence of an L-SPI and an R-SPI domain requires two
defects as depicted in Fig. 2�c�: a phase generating P+ and a
phase annihilating P−. The dynamics of such a configuration
will be discussed later in this article.

Figure 3 depicts mode decompositions of the experimen-
tally obtained velocity field �a� and �b� w and �c� u in the
meridional plane. In the vicinity of a P+ defect, the ampli-
tude of the R-SPI mode �a� w−1 and the L-SPI mode �b� w1
�cf. Eq. �3� for the mode decomposition� is illustrated. They
overlap in the P+ defect at z�7.5 and each one penetrates
the region of the other. Together with u
1 of both spiral
modes in Fig. 3�c� which vanishes at any radial position in

the defect itself, one gets a better impression of the spiral
amplitudes near the defect. However, we also found the re-
verse type of defect where the amplitude of w vanishes and u
remains finite. All defects have in common that the ampli-
tude of exactly one velocity component, i.e., either u
1 or
w
1, is zero at any radial position in the defect �cf. table
below�.

Besides the spiral amplitudes, also the axisymmetric
mode u0 and w0 is found to be relevant for the stability of the
P+ or P− defect. A vector field plot in a meridional plane of
this stationary mode based on experimental and numerical
data is displayed in Figs. 4�a� and 4�b�. Experimental results
of a �=16 system are presented in �a�, whereas in �b�, the
numerical data of an axial periodic system with �=7.2 is
displayed. The colored lines with the arrows in �a� and �b�
indicate the circulation of the L-SPI in blue �dark gray� and
that one caused by R-SPI in green �light gray�. Near the
inner cylinder, the circulation flow caused by the m=0
modes, u0er+w0ez, in both systems is always axially directed
to the same direction as the phase propagation of the spirals,
e.g., upwards for L-SPI and downwards for R-SPI. This large
circulation is additionally illustrated in Figs. 4�c�–4�e� where
the axial velocity w0 is plotted in radial direction for three
different z positions, i.e., �c� above �z=9.5�, �d� along �z
=7.8� and �e� below the P+ defect �z=5.5�. These axial po-
sitions are indicated as dashed arrows in �a� and �b�. The
symbols ��� correspond to the experimental values of Fig.
4�a� and solid lines indicate the numerically determined val-
ues in the axial periodic system �b� of the flow.

It is clearly visible that the axial flow near the inner cyl-
inder is directed upwards above the defect and downwards
below it. This is reversed in the vicinity of the outer cylinder.
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FIG. 2. �Color online� Schematic overview of three different
realizations of the defect structure in the �� ,z� plane with �a� a P+

defect, �b� a P− defect, and �c� a combined P+ and P− defect, in the
finite �a� and �b� and �c� the axial periodic system. All phase shifts
are �=� �see below�. The phase propagation is indicated by small
black arrows, thick �thin� colored lines correspond to the maxima
�minima� of the u field. L-SPI are indicated by blue �dark gray�,
R-SPI by green �light gray� color, and Ekman vortices in �a� and �b�
by thick black horizontal lines. 1 2
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FIG. 3. Gray coded �black corresponds to the maximal value�
spiral amplitudes �a� w+1, �b� w−1, and �c� u
1 �cf. Eq. �3� for the
mode decomposition� in a meridional plane in the vicinity �cutout
5z10.2� of a P+ defect with a phase shift �=� �see below� at
midheight �dashed line�. White regions are experimentally inacces-
sible �R1=140�.
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In particular, the axial flow is zero at any radial position
along the defect itself, as illustrated in Fig. 4�d�. Thus, the
defect behaves in some respect such as a wall.

The spirals within two adjacent spiral domains have a
fixed phase relation �phase shift �=�� in the defect. Figure 5
gives an overview of the four observed stable kinds of de-
fects.

The structural properties of the corresponding phase gen-
erating or annihilating defect are shown by isosurfaces of the
numerically determined azimuthal vorticity �zu−�rw= 
60.
The diagrams on the right indicate schematically the position
of the maximal �thick colored line� and the minimal �thin
colored line� u of the respective spiral. They can be distin-
guished by their respective mode indices m and the color,
i.e., L-SPI �m=+1� in blue �dark gray� and R-SPI �m=−1� in
green �light gray�. In Figs. 5�a� and 5�b�, both defects gen-
erate phase and the spirals have a phase difference of �=�,
so called P+,�, in �a� and �=0, so called P+,0, in �b�. In Figs.
5�c� and 5�d�, the defects annihilate phase with a phase dif-
ference of either �c� �=� or �d� �=0, so called P−,� and
P−,0, respectively. Each of these states are found to be stable
in a finite Taylor-Couette system. The following table gives
the phase shifts in u as well as in the w in a P+,� and P−,�
defect with a given �

P+,0 P+,� P−,0 P−,�

u 0 � 0 �

w � 0 � 0

.

IV. DEFECTS IN AXIAL PERIODIC SYSTEMS

The general behavior of isolated P+ and P− defects should
be studied without the influence of the boundary induced
underlying Ekman vortices in an axial infinite long or peri-
odic system. In fact, rigid lids imposing m=0 disturbances
are not necessary for the system to generate P
 defects. A
sufficiently long system ��12 with periodic boundary con-
ditions allows a state consisting of a phase generating P+ and
a phase annihilating P− defect which separate R-SPI and
L-SPI domains as schematically illustrated in Fig. 2�c�. Such
a state can be prepared numerically by mirroring extended
spirals. Furthermore, by imposing glide-mirror transforma-
tions, arbitrary phase shifts � of the m= 
1 modes in the
defect are also obtainable as initial conditions.

Simulations showed that the periodic system prefers P
,�
with �=�, i.e., other phase shifts ��� are unstable and
disappear when chosen as initial state for the benefit of a
P
,�. In the finite system with rigid end walls, we found
stable states with �=� and additionally �=0 which is a sig-
nificant difference between both types of boundary condi-
tions. However, for a given periodicity length �, the flow has
to enlarge or shrink the localized spiral domains in order to
obtain the preferred phase shift. We found that the shrinking
�expansion� of a region is accompanied by a decrease �in-
crease� of the spiral amplitudes in the respective domain and
vice versa, i.e., in a setup with several domains of different
spiral chirality, these regions with smaller spiral amplitudes
shrink for the benefit of those with larger amplitudes.
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FIG. 4. �Color online� �a�, �b� Vector plots �cutouts 4.9z
10.2 of a �=16 system� of flow u0er+w0ez generated by the
axisymmetric amplitudes �cf. Eq. �3�� in the vicinity of a P+ defect
with phase shift �=�. �a� Experimental measurements in a finite
system and �b� numerical simulations in an axial periodic system.
The colored lines with the arrows in �a� and �b� indicate the circu-
lation of the L-SPI �solid, blue �dark gray�� and the R-SPI �dashed,
green �light gray��. Near the inner cylinder, this circulation is al-
ways axially directed in the same direction as the phase propagation
of the spiral, e.g., upwards for the L-SPI and downwards for the
R-SPI. The horizontal dashed arrows indicate three axial positions
of the radial profiles of w0 in �c�–�e�. The symbols ��� indicate the
experimental and the solid line indicates the numerically deter-
mined values �R1=140�.
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FIG. 5. �Color online� Overview of four different kinds of de-
fects. The 3D plots show the structural properties of the defects by
isosurfaces of the numerically determined azimuthal vorticity �zu
−�rw= 
60—positive �red �dark gray��, negative �green �light
gray��. The thick �thin� solid lines in the line plots correspond to the
maximal �minimal� u of the spirals: L-SPI �blue �dark gray��, R-SPI
�green �light gray��. In �a� and �b�, the defects generate the phase of
the spirals having a phase difference of �a� �=� and �b� �=0. In �c�
and �d� the defects are phase annihilating with the phase differences
�c� �=� and �d� �=0.
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A. Intrinsic axial net flow

As shown in �21�, global spirals, i.e., a domain of one
single spiral type, generate an intrinsic axial net flow that is
driven by Reynolds stresses. It is directed oppositely to the
phase velocity of the spiral �cf. Sec. V�. This intrinsic flow
depends on the amplitudes of the SPI velocity field, i.e.,
smaller amplitudes drive smaller net flow �21�. Thus, in a
setup with a separated R- and L-SPI domain with different
local amplitudes, the two resulting net flows at the location
of the defect do not compensate each other. This difference
leads to an axial advection of the defect. In contrast to rigid
axial ends, in the periodic boundary case, a global
�w�r ,� ,z��r,� mode is possible and leads to a defect propa-
gation because they behave like impermeable walls �cf. Sec.
V� which, however, are blown away like sails in the wind.

Generally speaking, two effects influence the defect be-
havior in a long system with �several� spiral domains: those
with smaller �larger� spiral amplitudes shrink �enlarge�
whereas simultaneously producing weaker �stronger� intrin-
sic axial net flows. Due to the continuity constraint, different
intrinsic axial net flows lead to a global axial net flow blow-
ing the defects with different velocities through the system.

If there would be a balance between the local amplitudes,
the local intrinsic flows and the global axial flow, then the
defect state would be stationary in an axially comoving
frame. In our simulations, we could observe such “fragile”
states. This changes if one externally imposes an additional
axial through flow.

B. External axial through flow and transients

Imposing an external axial through flow Re influences the
amplitudes within both spiral domains in different ways. As
described in �21� for the global spiral case, the amplitude of
the L-SPI �R-SPI� becomes larger �smaller� for positive Re.
Therefore, positive Re enlarges the spiral amplitude in the
L-SPI domain and reduces the amplitude in the R-SPI do-
main. The latter then decays and finally disappears when
both defects mutually annihilate. This is illustrated in Fig.
6�b� for a P+ / P− state in a system with Re=4 which disap-
pears for the benefit of a global L-SPI. In order to completely
destroy this P+ / P− state, a minimal Re�1 is needed which
depends on the other control parameters.

Furthermore, if Re is switched off instantaneously, the
different intrinsic axial flows that is caused by different local
spiral amplitudes in the respective spiral domains generate a
resulting, nonvanishing global net flow which is directed op-
positely to the formerly imposed through flow and therefore
blows the defects in the opposite direction. This can be ob-
served in Fig. 6�a� for Re=2 during the first 1.7 diffusion
times and for Re=0 afterwards. The intrinsic driven propa-
gation velocities of the defects are constant and unequal due
to the different amplitudes within the R-SPI and L-SPI do-
mains. Once, the amplitudes have become different in size
�e.g., by infinitesimal disturbances�, the domain with the
smaller amplitude shrinks henceforth but does in general not
disappear completely.

V. MODE INTERACTION

A global spiral, say an L-SPI can be characterized by its
critical amplitudes uLªu1,1, uL

� =u−1,−1, wLªw1,1, and wL
�

=w−1,−1 �cf. Eq. �4��. The contributions to the w0,0 amplitude
that is generated by the nonlinear terms uw and w2 in the w
equation of the NSE �Eq. �2�� is given by a combination of
these critical modes leading to uLwL+uL

�wL+uLwL
� +uL

�wL
�

and 2wLwL
�, respectively. Thus, in a global spiral, the NSE

allow a nonvanishing, Reynolds stress driven axial net flow
w0,0 as discussed for example in �21�.

On the other hand, the four critical amplitudes for L-SPI
and R-SPI, uL, uL

�, uRªu1,−1, and uR
� =u−1,1 �and the analo-

gous amplitudes for w� combine to uLwL
� +uRwR

� +uL
�wL

+uR
�wR via the uw term and to 2�wL

2 +wR
2 � via the w2 term

into the w0,0 amplitude.
Considering the substitutions uLªuRe2i� and wL

ª−wRe2i� which describes the symmetry transformation z
→−z with an additional phase shift � at the defect �glide-
mirror symmetry�, one gets w0,0�0 only for �=� or �=0.
In other words, P
 defects behave such as impermeable
walls between adjacent spiral domains with phase shifts 0 or
�. However, further away from the defect, where L-SPI and
R-SPI amplitudes are different, there are indeed mirror sym-
metric, globally circulating closed mean flows on both sides
of the defect �Fig. 4�.

The u0,0 amplitude in the mode spectrum of the radial
velocity field u is prohibited by continuity and the radial
boundary conditions. Further, the four critical modes uL, uL

�,
uR, and uR

� combine to 2uLuL
� +2uRuR

� via the u2 term which
vanishes under the same substitutions mentioned above.

At the critical point kc ,�c and with the abbreviation

�m,n� ª fm,nei�m�+nkz�, f � �u,v,w,p	 ,

the two critical spiral modes �1,1� for L-SPI and �1,−1� for
R-SPI and their complex conjugates nonlinearly drive �in the
vicinity of a P
 defect� modes of the form �0,2�= �1,1�
+ �−1,1� corresponding to axial variations with 2kc. The am-
plitude of the azimuthal m=0 mode of our numerically ob-
tained u indeed varies in the defect region with a local axial
wave number of about 2kc. Additionally, we checked for sev-

FIG. 6. Numerically calculated spatiotemporal behavior of a
P+,� and a P−,� pair under periodic boundary conditions. �a� t
1.7: a nonvanishing axial through flow of Re=2 is applied and
the defects propagate downstream with the wind. After switching
off the through flow �Re=0� at t=1.7 �indicated by the vertical
dashed line�, the defects propagate in the opposite direction. In �b�
the increase in the R-SPI domain at the cost of the L-SPI domain
for constant Re=4 is illustrated. Both defects, P+ and P−, mutually
annihilate �R1=140�.
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eral R1 that the amplitude of u0,2 and similarly that of w0,2 in
the defect varies proportional to the quadratic terms uw and
u2 in the NSE as shown in Fig. 7.

The critical linear instability threshold of CCF against
growth of TVF with m=0, and kTVF,c4.95 lies at R1,c
118.6. We observed in the defect region between the spi-
rals an m=0 vortex flow with local axial wave number of
km=07.3 and furthermore, kSPI=3.65. Thus indeed, near the
defect, km=02kSPI is unrelated to kTVF,c.

VI. APPEARANCE OF THE DEFECTS

A. Defects without axial through flow

Also without an externally imposed axial through flow, P+
defects arise in a finite system as shown in Fig. 8 which

compares numerically �a�, �b�, and experimentally �c� and �d�
obtained results. It elucidates the spatiotemporal behavior of
a P+ defect in a �=16 system in the absence of an axial
through flow.

Starting at t=0 with an L-SPI in the bulk, a P+ defect
occurs at the lower Ekman-spiral defect and separates from
it. This Ekman-spiral defect thereby changes its behavior
from phase generating to annihilating. The P+ defect propa-
gates toward midheight and after 30 diffusion times, the sta-
tionary final state in Fig. 1�a� is accomplished with a phase
shift of �=�. A temporal cutout of this final state including
the P+ defect at midheight and the phase annihilating
Ekman-spiral defects at the end walls is depicted in Figs.
8�b� and 8�d�. Note, that the axial extension of the spiral in
the bulk or, equivalently, the extensions of the Ekman sys-
tems near the lids depend on the initial conditions. This holds
for simulations as well as for experiments. So, the difference
between the here presented numerical and experimental re-
sults is not surprising.

B. Defects with axial through flow

Imposing an external axial through flow breaks the sym-
metry degeneracy of the two SPI solutions. Hence, the Hopf
bifurcation to spirals splits up into a branch of downstream
propagating L-SPI which bifurcates first and into a branch of
upstream propagating R-SPI which bifurcates at a larger R1.
Furthermore, the phase velocities of both spirals are changed
�21,22�.

We start with the P+ state �as depicted in Fig. 1�a��, where
the P+ defect is located at midheight of a system with rigid
lids, and switch on an axial through flow instantaneously.
Then, the P+ defect begins to propagate downstream.
Thereby, the R-SPI domain expands. The initial propagation
velocity wd �measured at midheight� of this defect is illus-
trated in Fig. 9 showing experimental �� � and numerical
�� � results. As expected, the axial propagation velocity wd is
proportional to Re, i.e., to the mean axial flow. In the vicinity
of a P+ defect in an axially comoving frame �velocity wd�, all
Fourier modes 
um
 are found to be constant in time.

Numerical and experimental observations showed that the
velocity wd decreases when the defect approaches an axial
end wall and, for small through flow �Re0.2�, it stops at a
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FIG. 7. Mode amplitudes 
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are interpolations.
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FIG. 8. �Color online� Spatiotemporal behavior of a P+ defect
propagating into a global L-SPI: �a� and �b� color coded numeri-
cally simulated radial velocity field u�z , t� at midgap, �c� and �d�
flow visualization in experiment. In �a� and �c� the appearance of
the defect near the lower lid and its upward propagation is visible.
In �b� and �d� a temporal cutout of the final state including the P+

defect is depicted, the phase shift �=� is obvious �R1=140�.
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versus Re. The symbols describe the velocity at midheight for R1

=140 and R2=−125. The line is a linear fit.
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certain axial position inside the bulk, since the stationary
Ekman structure becomes more dominant near the lids.
Larger through flow values �Re�0.2� are necessary to blow
away the defect out of the bulk. In our case of a P+ defect,
the final structure would be a global R-SPI including a phase
generating �annihilating� Ekman-spiral defect at top �bot-
tom�.

Besides P+ defects, Fig. 10 displays an example for the
generation of a P− defect with phase shift �=� which ac-
crues near the lower lid. An initially existing R-SPI is com-
pletely replaced by an L-SPI due to the finite through flow
Re=0.3 which blows the P−,� defect and the R-SPI out of the
bulk. Note that the defect region is wider than that of P+
states and covers a relatively large area where R-SPI and
L-SPI interact to a mixed state.

C. Stability

The numerically determined bifurcation thresholds of
L-SPI and R-SPI for periodic boundary conditions are
marked as a single thick line in Fig. 11. For positive Re, the
bifurcation as well as the absolute instability threshold for
R-SPI lie slightly above those of L-SPI but are not distin-
guishable from them with the resolution in this figure
�22,23�.

Only stable states are depicted in the phase diagram of
Fig. 11; open �closed� symbols refer to experimental �nu-
merical� results. Stability boundaries were mostly deter-
mined by varying R1 quasistatically at fixed Re, starting ei-
ther from CCF for Re=0 or from Couette-Poiseuille flow
�CPF� for Re�0. However, also selected Re scans at fixed
R1 have been done. For control parameters in the shaded
region, global L-SPI and R-SPI are bistable. The global
R-SPI looses stability below the line marked by �� ,�� and
undergoes a transition to the global L-SPI via a P− defect.
Hence, for small R1, the system prefers that spiral type which
is traveling downstream as in axially periodic systems �21�.
On the other hand, above the line marked by �� ,��, the
global L-SPI undergoes a transition to a global R-SPI �for
Re�0.2�. In both cases the chirality of the spirals is changed
via a transient in which a P+ �L-SPI to R-SPI� or a P− defect
�R-SPI to L-SPI� is generated at the lower �upper� Ekman-
spiral defect and then propagates downstream �upstream�. In

fact, the P+ �P−� defect always evolves out of the phase
generating �annihilating� Ekman-spiral defect, as described
above.

For Re=0, both mirror-symmetric global spiral states un-
dergo a transition to a P+ state with the P+ defect at mid-
height when the driving is increased �quasistatically� beyond
�=0.17, cf. Fig. 11. This transition occurs when the phase
generating Ekman-spiral defect bounding the global L-SPI
�R-SPI� at the lower �upper� end emits a P+ defect that then
moves into the center of the system.

VII. CONCLUSION

Our numerical and experimental study revealed the exis-
tence of stable defects between oppositely traveling spiral
waves in counter-rotating Taylor-Couette flow. Defects either
generate �P+� or annihilate phase �P−� and separate domains
of different spiral chirality with a distinct phase difference of
either 0 or � at the domain wall. Thus, four different types,
namely P+,0, P+,�, P−,0, and P−,� can be observed. These
defects are stabilized by a nonlinear mode coupling and be-
have like impermeable walls. This means, that in the spiral
domains above and below the defects a large circulation
caused by the axisymmetric m=0 modes has been observed.
Near the inner cylinder in both systems the flow is thereby
axially directed to the same direction as the phase propaga-
tion of the corresponding spiral �upwards for L-SPI and
downwards for R-SPI�.

Under periodic boundary conditions, defects always occur
as a P+,� / P−,� pair. Their stability depends on the mean axial
flow which may either be externally imposed or a conse-
quence of initially different amplitudes in the R-SPI and
L-SPI domain �intrinsic net flow� and stimulates both defects
to axially propagate with, in general, different velocities.
Thus, the defects approach each other and, for sufficiently
strong Re, mutually annihilate. For moderate or vanishing

0 20
t

0

16

z

9.5
t

8.5

FIG. 10. Spatiotemporal plot of the numerically obtained u field
of a P−,� defect which mediates the transition from a global R-SPI
to a global L-SPI �left�. The cutout �right� covers one diffusion time
for a better visualization of the defect and the phase shift �=�.
Parameters are R1=118 and Re=0.3.
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cation threshold for SPI. In the range of Re shown here, the thresh-
olds for both spiral types fall together for the given resolution. �
=R1 /R1,c−1 with R1,c=115 �R1,c=117.2� in experiment �numerical
calculations�. The R1 axis is based on the experimental R1,c.
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through flow, on the other hand, we observed stable P+ / P−
configurations.

In the finite system, a single defect travels, due to the
Ekman profile, toward the axial middle of the bulk and the
final P+ or P state is stable. However, small externally im-
posed axial through flow influences the defect propagation
and changes its final axial position. For stronger through
flow, a transition scenario from a global R-SPI state to a
global L-SPI state or vice versa is mediated by a propagating

defect pushing one spiral domain out and pulling the other
through the bulk.
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