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We present the results of an experimental and numerical investigation into 
Taylor-Couettc flow with gap-length to width ratios (r = l / d )  ranging from 0.3 to 
1.4. Laser-Doppler-velocimetry is used to obtain quantitative information on the 
bifurcation set experimentally, and novel flow phenomena are uncovered. These 
results are compared with those obtained using numerical bifurcation techniques 
applied to  a finite-element discretization of the Navier-Stokes equations. In  general, 
the agreement is good and most of the observations are satisfactorily explained. 

1. Introduction 
The importance of end effect's in selecting the steady cellular stat>es of 

Taylor-Couette flow was recognized by Benjamin (1978a, b ) .  He used Leray- 
Schauder degree theory to study the general properties of bifurcations among 
steady solutions of the Navier-Stokes equations. The degree arguments had 
previously been used by Velte (1964, 1966) to show the exist'ence of solutions for 
cellular motion in Taylor's (1923) infinite-cylinder model. Benjamin demonstrated 
the requirement that a minimum of nine solution branches is necessary to  explain the 
exchange of stability between adjacent steady solutions. Thus, in any experiment 
where the cylinders are moderately long, the number of solutions is very large 
(Benjamin & Mullin 1982), so that' a rigorous study of the nature of the bifurcations 
is difficult in practice. Thus the studies of finite-length effects have so far been 
concentrated on shorter cylinders where well controlled experiments are less difficult 
to perform because the set of possible solutions is limit'ed. 

The hysteresis phenomena associated with the exchange of stability between 
adjacent modes was demonstrated experimentally by Benjamin (1978a, b )  and later 
extended to other modes by Mullin (1982) and Mullin, Pfister & Lorenzen (1983). A 
model to explain the hysteretic events was proposed by Schaeffer (1980) who used a 
homotopy parameter, 7, to form a connection between the infinite-cylinder model 
(7 = 0) and the finite geometry (7 = 1 )  of the experiment. The model has been worked 
out in detail for a specific case by Hall (1982). The experimental and theoretical work 
was later confirmed to a large extent in the numerical work of Cliffe (1984) who also 
uncovered new aspects of the problem that are related to the reflection symmetry 
about the midplane. 

A necessary consequence of both Benjamin's and Schaeffer's work is the exist'ence 
of other stable, steady solution branches which are generally disconnected from those 
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found at) small Reynolds numbers R. These are t'he anomalous modes and are so 
callcd because they have a direction of rotation of one or both end cells such that 
there is outward flow along either or both endwalls. This is contrary t'o the long-held 
belief that as the centrifugal force falls off towards the ends of the cylinders then 
there must be inward-directed flow a t  the stationary endwalls. An extended study of 
the properties of the anomalous modes was given by Benjamin & Mullin (1981) and 
many of the findings were later confirmed by Cliffe & Mullin (1985) and Bolstad & 
Kcller (1987). 

The work of Benjamin & Mullin also demonstrated the existence of a single-cell 
mode a t  very small values of the non-dimensionalized length, the aspect ratio 
r = b/d ,  where 1 is the length of the annulus and d = r2 - r l .  Casual observation of the 
single-cell state was also made in an independent study by Thomas (1979). Benjamin 
& Mullin used Schaeffcr's model to interpret their experimental results and all of the 
salient features have subsequently been confirmed in bot'h numerical and 
experimental work by Cliffe (1983), Schmidt (1983). Liicke et ab. (1984) and Aitta, 
Ahlers & Cannell (1985). 

At very small values of the aspect ratio the single-cell states remain connected to 
the two-cell primary flow which develops smoothly from R = 0. The process whereby 
disconnection occurs is illustrated in figure 1. I n  figure 1 (a) we see that the primary 
two-cell state loses stability to  a pair of single-cell states a t  Rcl through a 
supercritical bifurcation. It regains stability a t  a higher value of R by shedding a pair 
of unstable branches a t  Rcz. Of course, in any real experiment, imperfections would 
disconnect these bifurcations so that one would observe the smooth development of 
a single cell with a preferred direction of rotation. Nevertheless, both states are 
observable in the experiment although one is only reached by a trick such as a sudden 
start of the apparatus to a value of R above Rc2. We consider the imperfect'ion-free 
case in figure 1 in order to simplify the explanation. The supercritical bifurcation has 
been studied by Liicke et al. and detailed comparison between experiment and 
numerical results has been given. 

As the aspect ratio is increased the bifurcation a t  Rcl develops quartic contact, 
becoming subcritical as shown in figure l ( b ) .  Now there is hysteresis in the 
development of the single-cell states and the interaction with the two-cell state above 
Rc2 is increased. The change from supercritical to subcritical bifurcation has been 
studied in detail experimentally by Aitta et ab. (1985). 

Further increase in r leads to the disconnection of the single-cell states, as shown 
in figure 1 ( c ) ,  so that they now become true secondary modes. The complete picture 
described above was observed experimentally by Benjamin & Mullin (1981) and 
Schmidt (1983). and confirmed numerically by Cliffe (1983). It is interesting to note 
that the single-cell state is apparent'ly the only anomalous mode that remains 
connected in this way. The other odd-numbered modes are disconnected in a similar 
manner but do so as the Schaeffcr homotopy parameter varies from 7 = 0 (the 
periodic model case) to 7 = 1 (the physical situation). Thus all other odd-cell modes 
are disconnected pairs of states and do not interact with the primary states. 

The aim of the present investigation was first to  study the complet,e disconnection 
procedure a t  a smaller value of the radius ratio 11 = r l / r 2 ,  This involved an 
experimental study at 11 = 0.5 and complementaary numerical work using modern 
numerical bifurcation techniques. The numerical methods have previously been 
described in detail by Clliffe & Spence (1985) and consist of continuation methods 
applied to a finite-element discretization of the Navier-Stokes equatons. A brief 
outline of these methods is given in $3. 
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FIGURE 1. Bifurcation diagrams showing the interaction of the two-cell and one-cell flows. A linear 
functional (such as the axial velocity at the midplane) distinguishing the asymmetric flows is 
plotted against R .  Branches with a negative sign denote unstable solutions. R,, denotes the critical 
Reynolds number for the supercritical and the subcritical bifurcations which give rise to the single- 
cell flows. RCz marks the bifurcation point for the two-cell secondary mode and RCI is the lower limit 
of stability of the one-cell modes. The aspect ratio increases from (a) to ( b )  to (c). 

The experiments consisted of using laser-Doppler velocimetry (LDV) to obtain 
high-quality data on the nature of the bifurcations involved by measuring the 
changes in the stable branches as the aspect ratio is varied. In  addition, an attempt 
was made to obtain indirect measurements of the unstable branches which helps to 
clarify the complete solution map and can be compared with those computed 
numerically. A t  very small values of the aspect ratio, a new and unsuspected solution 
branch was first found experimentally and subsequently identified numerically 
indicating that the original model is in some sense incomplete. Further, the discovery 
of the new steady flows led directly to the uncovering of a period-doubling route to 
chaos (Pfister 1985). It is thought that this is possible because of the limited number 
of spatial modes available to the flow a t  such small aspect ratios. Finally, some 
conclusions are drawn about the present findings and suggestions are made for future 
work since there are indications that, even in this very restricted range of parameter 
space, our knowledge of the solution set may yet be incomplete. 

2. Apparatus and measuring techniques 
The inner cylinder of our Taylor-Couette apparatus was machined from stainless 

steel and had a radius of rl = 11.5 mm, while the outer cylinder was machined from 
Perspex and its radus was r2 = 23.0 mm. Thus the radius ratio was q = r1 / r2  = 0.5, 
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the so-called wide-gap case. The accuracy of the radii was better than 0.01 mm over 
the entire length. The flow regime of interest was contained between stationary 
bottom and top plates. The gap length could be varied continuously by moving the 
metal collar which provided the top surface of the flow domain. The metal collar was 
held by three stainless-steel rods. This construction allowed a variable tilting angle 
between the top plate and the plane perpendicular to the rotation axis of about 0.1". 
The majority of tjhe experiments were carried out with a zero tilt angle. However, the 
effect of variation of the tilt angle upon the bifurcations was investigated. This point 
will be discussed later in the presentation of the results. 

The corners of the gap were manufactured to better than 0.02 mm and i t  was found 
experimentally that their effects did not penetrate far into the fluid. The fluid 
confined in the gap was silicone oil with a kinematic viscosity v = 0.35 cm2 s-l a t  
25 "C with an uncertainty in the absolute value of about 1 %. The dynamical 
parameter is bhe Reynolds number defined as R = DdrJil, where D is the angular 
frequency of the rotation for the inner cylinder, and d = r 2 - r 1  is the width of the 
annular gap. The temperature of the fluid was held constant to within 0.01 K by 
circulating thermostatically controlled silicone oil through a surrounding square box. 
The error in the orientation of the LDV fringe system, caused by slight refractive 
index mismatch, was minimized by rotating the outer box through a small angle. The 
magnitude of the error was determined by comparing measurements of the radial 
velocity made with the inner cylinder rotating in opposite directions. The angle of 
rotation of the box was chosen so that this source of error was negligible. 

A phase-locked-loop circuit controlled the speed of the inner cylinder to better 
than one part in lop4 in the short term and better than one part in 10+ on the long- 
term average. Thus the accuracy of the absolute value of the Reynolds number was 
about 1 % and for relative changes better than lop5. The local velocity was measured 
by a real-fringe Doppler anemometer using a phase-locked-loop (PLL) tracker for 
analogue recording of the velocity (Hille 1984). Two Bragg cells were used to 
determine the velocity direction by applying a bias to the signal. The Bragg shift of 
bot,h cells was 40 and 40.1 MHz, transferring the zero velocity to 100 kHz. The 
tracker operated in the range of 15 to 200 kHz giving a suitable measurement range 
for the velocity. The working fluid had to be seeded to obtain proper signal quality. 
For this purpose the silicone oil was seeded with Latex spheres of diameter 2 pm, 
which was suited to the fringe spacing of about 3 pm in this experimental set-up. 
Since the Latex spheres could be obtained only in an aqueous solution, they had first 
to be dried and then suspended in the silicone oil by the use of an ultrasonic 
generator. 

Further signal processing (Pfister et al. 1983) yielded the velocity correlation 
function and the velocity power spectrum directly. By this means we could 
accurately determine whether the flow was stationary or showed time-dependent 
behaviour. With a motor-driven lift for the z-direction and a precision x-ij table the 
measurement volume of the LDV system could be placed anywhere in the gap. 
Additionally the location of the lift could be recorded versus the analog output of 
the PLL tracker to obtain an axial velocity profile using either the radial or axial 
component of velocity. All the velocity-Reynolds-number diagrams were obtained 
by continuously recording the velocity as the Reynolds number was changed quasi- 
statically. Figure 7 shows the unfiltered data, all the other figures show filtered data 
with the LDV noise removed. 
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3. Numerical methods 
In  cylindrical polar coordinates (r*,  8, z*)  with the origin midway between the 

ends of the annular gap and velocity u* = (u:, ug*, ur) ,  the equations for axisymmetric 
flow of a viscous, incompressible fluid are 

In  the above equations r ,  z ,  u and p are given by 

and 

where d = r2 - r1 ,  p = r,/d = q / ( l - q )  and q = rJr2 is the radius ratio. The aspect 
ratio r = l / d  and the Reynolds number R = pr, Qd/,u, where p and p are the fluid 
density and viscosity respectively. 

Equations (1)-(4) hold in the region D where 

D = [ ( r ,  z )  10 d r d 1,  -0.5 d z < 0.51. (5) 

The boundary conditions are such that u, and u, are zero on the entire boundary, and 
that u, is zero on the outer cylinder ( r  = 1 )  and 1 on the inner cylinder ( r  = 0). u, is 
also zero at  the ends ( z  = f0.5) except near the inner cylinder where it increases 
smoothly to 1 over a small distance, E .  In  the experiment the corresponding value of 
E and the variation of u, are unknown ; however, we have found the numerical results 
to be insensitive to the value of E provided that it is sufficiently small. 

The numerical treatment of (1)-(4) is based on the finite-element method combined 
with techniques from numerical bifurcation theory. The finite-element method is 
used to discretize the ( r ,  z)-region D, and the t-variable is not discretized. This leads 
to a set of ordinary differential equations in t ,  the dependent variables being velocity 
and pressure degrees of freedom in the (r,z)-discretization. We may write these 
equations in the form 

(6) 
ax 
at 

AX, R, r)  = 0. 

M-+Ax,R,r)  = 0. 

Steady axisymmetric flow is governed by the equation 

( 7 )  

Methods for treating (7) have previously been used to study the Taylor-Couette 
problem (Cliffe 1983; Cliffe & Mullin 1985; Cliffe 1984) and numerical details for 
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computing solution branches, paths of limit points, paths of symmetry-breaking 
bifurcation points and paths of Hopf bifurcation points may be found in Cliffe & 
Spence (1986) and Cliffe, Jepson & Spence (1986). The linear stability of a steady 
solution (x,, R,, 4) of (7) may be examined using the eigenvalue problem 

f , r  =OM<. (8 )  

If all eigenvalues CT have Re CT > 0 then x, is linearly stable. If there is one eigenvalue 
with Re o < 0 then the flow is unstable and the time constant for the growth of the 
unstable mode is T* s, where 

(9) 
7* = R(1 -?I) 

CTQY . 
The behaviour of a given eigenvalue along a solution branch can be determined by 
applying the standard continuation techniques of Keller (1977) to the system 
consisting of (7) and (8) together with a normalization condition on the eigenvector 
5.  In  the eigenvalue calculation performed here, a starting point for the continuation 
procedure was taken to be a point on the path of symmetry-breaking bifurcation 
points where CT = 0 and the eigenvector is available from the extended system for the 
bifurcation point. 

The stability of symmetric flows near a symmetry-breaking bifurcation point can 
be studied by calculating the rate of change of the zero eigenvalue with Reynolds 
number, acr/aR. If 5, is the singular right eigenvector and lo is the corresponding left 

where f ” u R + f ” R  = 0 (11) 

and f” -Axo, R,, 4)  etc, where (x,, R,, 4) is the symmetry-breaking bifurcation 
point. 

The calculations of the symmetric flows and symmetry-breaking bifurcation 
points were performed using techniques to exploit the symmetry (Cliffe & Spence 
1986) so that  only half the domain D was discretized. Most of the calculations were 
done on a uniform mesh with 20 elements in the r-direction and 10 in the z-direction. 
The results were checked on a 40 x 20 grid a t  several points and it was found that an 
overall accuracy of better than 1 YO was achieved. The asymmetric flows and limit 
points were calculated on the full domain using 20x20  and 40x40  meshes 
respectively. Finally, local refinement was used near the corners where the rotating 
inner cylinder meets the stationary ends (see Cliffe 1983). 

4. Results 
The flows we consider in this paper are illustrated in figure 2. The figure shows 

computed streamline plots for the symmetric two-cell and the single-cell states for an 
aspect ratio r = 1, where i and o stand for the inner and outer cylinder and b and 
t the bottom and top plate respectively. A more detailed discussion of the flow 
pattern a t  this aspect ratio is given by Liicke et al. (1984). The two-cell flow is mirror 
symmetric relative to the midplane with the maximum outward flow velocity lying 
in this plane. The axial velocity component, in the midplane, of the symmetric two- 
cell state is zero for all Reynolds numbers. 

For the single-cell there exist two equivalent modes each with a large main vortex 
and a small weak one near the top or bottom plate respectively. In  contrast to the 
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FIGURE 2. Computed streamlines for the two-cell and single-cell states for an aspect ratio r = 1.0: 
o and i indicate outer and inner cylinder and t and b the top and bottom plates. Note that there 
is always a small secondary vortex visible in one corner which is very much weaker than the main 
vortex. We refer to this flow as the single-cell state as this defines the origins of the flow more 
clearly. 

symmetric mode, the axial velocity component is non-zero in the midplane for all 
radii. With appropriate adjustment it is therefore possible to characterize the actual 
flow mode by a measurement of a single local velocity component. However, in 
practice it is more convenient to measure the local radial velocity component. 
Unfortunately, it is not possible to distinguish between the asymmetric states using 
only the radial component. Therefore we have measured both the radial and axial 
component, mainly using the latter for identification of the flow mode. 

Figure 3 shows the radial velocity component in the middle of the gap plotted 
against height, for the three possible modes. Profile s shows the symmetric state and 
profiles a, and ab the two asymmetric states respectively. Thus velocity measure- 
ments in the middle of the gap at the midplane may be used to obtain 
information about the type of flow present in the annulus and give a measure of the 
asymmetry in the flow. We used this as a linear functional which discriminates 
between the flow modes. 

4.1. Stable branches 

The measurement techniques outlined in $2 were used to obtain the loci of critical 
points for the various bifurcations as a function of r. The results are shown in figure 4 
where we have also plotted the numerically determined curves for comparison. We 
shall now discuss each portion of the stability diagram in detail. 

The section of the curve labelled AB is the locus of the supercritical bifurcation 
points for the appearance of the single-cell state. The smallest value of aspect ratio 
obtainable was 0.34 which was a limitation imposed by the geometry of the laser 
beams used in the measuring system. The bifurcation is disconnected by the presence 
of imperfections in the apparatus and thus there is a smooth development of one of 
the single-cell flows. Nevertheless, a good estimate of the bifurcation point could be 
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FIGURE 3. Experimental radial velocity component versus height for the flow modes shown in 
figure 2 .  The profiles are taken in the middle of the gap for an aspect ratio r = 1.264 and R = 122.0. 
Profile s shows the symmetric flow mode whereas the profiles ub amd a, show the two single-cell 
modes that are possible for these boundary conditions. 
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FIGURE 4. Experimental and numerically determined bifurcation set for the one-two-cell 
interaction. The solid lines are numerically determined, and the symbols mark the experimental 
data points: ABCD and A, path of symmetry-breaking bifurcation points; BE and m, path of 
limit) points on the single-cell solution sheet; FGH and 0, new path of symmetry-breaking 
bifurcation points ; IG, path of axisymmetric Hopf bifurcation points ; , experimentally observed 
transition to axisymmetric oscillations. 

obtained from the sharp change in the slope of the radial velocity as a function of R, 
as may be seen in figure 5. 

As the aspect ratio is increased towards B, in figure 4, there is a pronounced 
steepening in the measured-axial-velocity plots as shown in figure 6. This indicates 
the presence of a quartic point at B where the supercritical bifurcation changes 
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FIGURE 5. Experimental radial velocity component versus Reynolds number showing a 
supercritical bifurcation from a symmetric two-cell state to a single-cell state. The trace is the same 
for increasing and for decreasing Reynolds number. The kink in the curve indicates the critical 
point. 
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FIGURE 6. Experimental axial velocity component versus Reynolds number for aspect ratios near 
the point B in figure 4 showing the pronounced steepening as the quartic point is approached. 

to a subcritical one with increasing r. In  the very small aspect-ratio range 
r = 1.267-1.304 the flow exhibits subcritical behaviour with its associated hysteresis. 
The plots of measured vertical velocity against R for this region are shown in 
figure 7 ; we also show an enlarged (R, r ) -plot  in figure 8 to highlight the hysteresis. 
The hysteresis phenomenon is a delicate feature which requires very tight experi- 
mental control to assure repeatable measurements. However, the critical points are well 
defined and an accurate estimate of their values can be made in the experiment. The 
delicate nature of the events can perhaps account for the discrepancy between the 
numerical results and the experiments in this region as the hysteresis phenomena 
may be extremely sensitive to small imperfections in the apparatus. 

The two-cell secondary branch may also be seen in figure 7 .  As r is increased from 
1.267 to 1.304 the interaction between the two-cell primary and secondary states 
increases so that for r slightly greater than 1.304 there is a continuous connection 
of the two-cell state. The line CD in figure 4 shows the locus of symmetry-breaking 
bifurcation points for the two-cell secondary mode. 
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FIGURE 7. Plots of experimentally measured axial velocity component versus R,  in the hysteresis 
region. The secondary two-cell state is also shown. The data in these diagrams has not been filtered 
in order to illustrate the noise level in the LDV system. 

r 
FIGURE 8. Enlargement of the hysteretic part of figure 5 (experiment only). 

The single-cell modes thus become disconnected and are now true secondary modes 
as they cannot be reached by a smooth change in R. They may only be obtained by 
a jump to a value of R above the critical value. A typical experimental axial velocity 
versus R plot is shown in figure 9 where we have included measurements for both 
single-cell states to highlight the usefulness of measuring the vertical component of 
velocity. The locus of the lower limits of stability of the single-cell states as a function 
of r is labelled BE in figure 4. 

All of the above results are in qualitative agreement with those obtained 
previously in the flow-visualization experiments of Benjamin & Mullin (1981). They 
covered the aspect-ratio range of 0.65 to 1.5 using apparatus with a radius ratio of 
0.615. The results obtained here indicate an overall shift towards lower values of R 
for a reduction in radius ratio. 
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FIQURE 9. Plot of axial velocity component versus Reynolds number showing the collapse of the 
two single-cell modes to the symmetric primary mode. The slight difference in critical Reynolds 
numbers arises owing to small imperfections in the apparatus which destroy the perfect 
symmetry. 

FIGURE 10. Computed steamlines for the new two-cell flow a t  aspect ratio 0.4 and Reynolds number 
525: o and i indicate outer and inner cylinder and t and b the top and bottom plates. 

It was anticipated that a period-doubling sequence could be found a t  these small 
values of aspect ratio where the number of spatial modes is strictly limited. During 
the search for this feature a new steady flow was uncovered. This had the apparance 
of a two-cell symmetric flow with the cells compressed towards the inner cylinder. It 
was not possible to obtain good quality photographs of this flow; however, the 
observations corresponded closely to the numerically computed streamline patterns, 
an example of which is shown in figure 10. 

The new flow was computed numerically by continuation in the Reynolds number 
along the primary, symmetric two-cell branch beyond the first symmetry-breaking 
bifurcation a t  an aspect ratio of 0.4. The determinant of the antisymmetric Jacobian 
matrix was monitored along the branch and a change in sign was detected indicating 
a symmetry-breaking bifurcation. The path of these symmetry-breaking bifur- 
cations, FGH in figure 4, was computed using the Werner-Spence extended system 
(Cliffe & Spence 1985) and continuation in the aspect ratio. 

The two-cell flow is stable outside the region ABCD and loses stability as this line 
is crossed. Since the line ABCD is a path of singular points with one-dimensional null 
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space it follows that there is only one eigenvalue with negative real part (i.e. which 
is unstable) in the region between ABCD and FGH. The value of au/aR, where CT is 
the zero eigenvalue a t  the bifurcation point, was computed (from (10)) aong the path 
FGH. It was found that alr/aR > 0 along FG and dv/dR < 0 along GH. Thus the 
eigenvalue that is singular along FG is negative below FG and positive just above it. 
Since there is only one negative eigenvalue in the region bounded by FGH and 
ABCD, it follows that this eigenvalue passes through zero as FG is crossed and that 
the two-cell flow is stable just above FG. However, the eigenvalue that is singular 
along GH is positive below GH and negative above i t ,  so that as GH is crossed the 
number of negative eigenvalucs increases from 1 to 2. 

If we now vary the aspect ratio and keep the Reynolds number fixed a t  a value just 
above that corresponding to G, we have a solution with two negative eigenvalues, to 
the right of G, changing continuously into one with no negative eigenvalues, to the 
left of G, without crossing any simple bifurcation points. This situation is resolved 
by the existence of an axisymmetric Hopf bifurcation: that is the two negative 
eigenvalues coalesce to form a complex-conjugate pair with negative real part which 
then cross tjhe imaginary axis (at  the Hopf bifurcation point) and coalesce to give two 
positive real eigenvalues. The line GI of axisymmetric Hopf bifurcation points was 
computed numerically using the appropriate extended system and continuation 
techniques. 

The new two-cell flow was found experimentally by switching to a value of R just 
above FG from the one below AB. Once the flow had settled down, R was gradually 
reduced and the critical value for collapse into the single-cell state was estimated in 
the usual way. The agreement between the experimental points and the numerically 
determined curve is reasonable. The new two-cell flow was not observed for aspect 
ratios greater than that corresponding to point G. 

When R was increased the two-cell flow lost stability to an axisymmetric 
oscillation. The motion was observed to be in phase around the cylindrical gap using 
a split laser-Doppler system. It can be seen from figure 4 that the agreement between 
the computed path of Hopf bifurcations, GI, and the experimentally determined 
points for the onset of the oscillation is good. In  addition we have measured the 
frequency near the onset of the oscillation and the comparison with the numerically 
computed values is given in figure 11.  The agreement is satisfactory although there 
appears to be some small systematic discrepancy as the point G is approached. 

An unresolved feature of the results is the sensitivity of the bifurcation giving rise 
to the new two-cell flow to small imperfections. It was observed in the experiments 
that a small tilt of the upper boundary (about 0.1") could produce two slightly 
asymmetric states from the single symmetric state. This seems to indicate that a 
small imposed imperfection changed the supercritical bifurcation into a subcritical 
one. It could be argued that the introduction of a small three-dimensional effect into 
the experiment renders the comparison with the axisymmetric numerical model 
meaningless. However, the amount of tilting was so small that it was close to the 
accuracy limits of the present apparatus. This perhaps indicates that the bifurcation 
is strongly imperfection sensitive and may be amenable to a linear stability analysis 
about the numerical solution. It is perhaps worth mentioning that we have not found 
this type of sensitivity in any of our previous studies of bifurcation phenomena and 
a further investigation is planned. 
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FIGURE 11. Comparison between calculations (-) and measurements (0 )  of the non- 
dimensionalized frequency for the axisymmetric oscillation of the new two-cell flow as the aspect 
ratio is varied. The frequencies are non-dimensionalized with respect to the inner-cylinder 
frequency. 

FKAURE 12. An illustration of the experimental technique used to examine the unstable flows. 

4.2. Unstable branches 

The unstable flows are of course respectable solutions of the complete mathematical 
problem. However, they are unobservable directly in any experiment since any small 
perturbation will grow exponentially and the flow will rapidly collapse to a nearby 
stable one. In an attempt to elucidate the complete solution set further we have 
devised an experimental method for indicating the behaviour of the flow near 
conjectured unstable branches. 

The experimental method consists\of starting with a steady stable flow and 
switching the Reynolds numbers suddenly to  a region where we expect an unstable 
branch to exist. As an illustrative example of the technique we refer to figure 12. 
Starting from point A to the left of the bifurcation point, R is suddenly increased to 
point B on the unstable branch. The change in R takes place in 0.01 s whereas it takes 
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FIGURE 13. Measured bifurcation diagram showing a plot of axial velocity versus R for r = 1.3. 
The circles indicate the estimates of the unstable part of the two-cell branch. 

-0.2 s for the flow to collapse to either of the stable branches in a well-defined 
relaxation process. Close to bifurcation points, this time can be as long as 1 min. The 
boundary of attraction is located when there is an equal likelihood of collapse in 
either direction towards nearby stable states. In  addition, the relaxation time 
reaches a maximum a t  these points. 

This technique was used to investigate the case when r= 1.3, where there is 
hysteresis in the development of the single-cell state. I n  figure 13 we show a plot of 
the axial velocity component u, for the symmetric two-cell states s and s* and one 
stable branch of the single-cell state. After locating the boundary of attraction of 
both single-cell states by the method outlined above, we made measurements of the 
growth rate from these points. For this purpose the starting points on s were chosen 
to be very close to the bifurcation point for the onset of the single-cell state. At these 
points imperfections in the apparatus naturally provide a slightly asymmetric 
starting state so that the flow always collapses towards a preferred single-cell state 
as shown in figure 13. 

The change of u, with time could then be recorded for the relaxation process 
towards the stable states. Examples of these measurements are shown in figure 14 
where the numbers on the various traces indicate the final Reynolds numbers. We 
fitted the initial slopes of the traces with an exponential, i.e. exp(t/7), and thus 
estimated the time constants which are shown in figure 15(a). Figure 15 (b) shows the 
time constants of the same process obtained from numerical calculations by the 
method outlined in $3, The qualitative form of the two sets of results are strikingly 
similar. We were unable to make a direct quantitative comparison because of the 
discrepancy between the experimental and numerical results for the critical values 
for the onset of the single-cell state. As mentioned above, we believe that the 
hysteresis region is extremely sensitive to imperfections, which may help to explain 
these differences. However, we chose to measure the relaxation times in this region 
owing to the closeness of both bifurcation points. 

Encouraged by this we have extended the experimental method to the boundary 
of attraction which separates the stable two-cell state s* and the single-cell states. In 
this case the starting points were chosen on the branches a, and ab (see figures 3 and 
16). By applying the method described above we could obtain a good estimate for the 
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FIGURE 14. Observed relaxation of the axial velocity component versus time of the unstable 
intermediate states shown in figure 11. Numbers indicate final Reynolds number. 
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FIGURE 15. Time constants versus Reynolds numbers: (a)  experimental points (the line is 
R R 

drawn to guide the eye) ; (b )  calculated. 

boundary that separates the basin of attraction of the two nearby stable states. As 
before the time constant for the relaxation process reaches a maximum value near 
this boundary and it increases as the bifurcation point is approached. Reasonable 
quantitative measurements of the time constant could not be made far away from 
the bifurcation point since the adjustment time of the flow to the new Reynolds 
number was of the same order as the relaxation time constant. The overall results of 
the estimated location of the unstable branches are shown in figure 16, where a slight 
uncoupling due to apparatus imperfections can be seen. In addition, we have 
included the estimates of the unstable part of the hysteresis region, which was 
determined as above. 
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FIGURE 16. Experimentally determined bifurcation diagram showing estimates of the complete 
branch structure for aspect ratio 1.3. The arrows indicate the relaxation directions, and the points 
indicate the conjectured unstable branches. 

The qualitative agreement between the results obtained here and the solution- 
branch structure conjectured by Benjamin & Mullin (1981) and numerically 
confirmed by Cliffe (1983) is very good. This leads us to speculate that there is a 
connection between our observations of the boundaries of attraction of the stable 
branches and the unstable branches of the mathematical model. Clearly the 
dynamics involved could be very complicated but we believe in this case that the 
very limited number of available solutions gives some substance to our claim. 

5 .  Conclusions 
The combined experimental and numerical study of this apparently simple form 

of the Taylor-Couette system has highlighted a variety of complex phenomena. 
However, the results can be mainly understood in a comparatively straightforward 
bifurcation model. Estimates for both stable and unstable branches have been 
presented and on the whole the agreement between experiment and theory is very 
satisfactory. 

A new symmetric state has been observed which has led directly to the uncovering 
of a period-doubling process. There is qualitative and quantitative agreement 
between the experimental and numerical results for both the steady and time- 
dependent forms of this new flow. The bifurcation giving rise to the flow seems to be 
extremely sensitive to imperfections, and this point warrants further experimental 
investigation with, perhaps, a greatly enlarged apparatus. 

It is perhaps worthy of note that there is preliminary experimental evidence that 
the steady solution set is still incomplete. A side-by-side two-cell state has been 
observed at  R = 8000, r = 0.68 and investigations are continuing in this regime. 
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