5 / 1 Elektrodenprozesse

Themen:

- Kinetik von Ladungstransfer
- Reaktionen mit mehreren Schritten
- Mechanismen des Stofftransports
- Keimbildung und Wachstum
- Passivierung von Elektroden
- Mischelektroden, Korrosion

5 / 2 3-Elektroden Konfiguration

Untersuchung von Prozessen an einer einzelnen Elektrode:

- mache U(J) unabhängig von Reaktionen an zweiter Elektrode ("Gegenelektrode")
 - \rightarrow 3-Elektroden Konfiguration
- Entkopple Transportraten der reagierenden Spezies von Ladungstransport in Elektrolyt → Überschusskonzentration anderer lonen ("Leitsalze")
 - WE: "Arbeitselektrode" (Probe)
 - CE: "Gegenelektrode" (Stromquelle)
 - RE: "Referenzelektrode" (Potentialreferenz)

5/3 Strom-Spannungs-Kurven

5 / 4 Ladungstransfers in elektrochemischen Reaktionen

Reaktionsrate: $v = k_R(\phi) \cdot a_O^S - k_O(\phi) \cdot a_R^S$ $a_O^S; a_R^S \equiv \text{Aktivitäten von O, R in Elektrolyt}$ nahe der Elektrodenoberfläche

> Anzahl der (gleichzeitig) übertragenen Elektronen in Realität fast immer n = 1

Standardgleichgewichtspotential ϕ_{00} $a_O^S = 1 = a_R^S$; $k_R(\phi_{00}) = k_O(\phi_{00})$

 $G_O(\phi_{00}) = G_R(\phi_{00})$

Potentialerhöhung auf ϕ

→ Freie Energie der oxidierten Spezies O (inkl. der der transferierten Elektronen) relativ zu reduzierter Spezies R um $ne_0(\phi - \phi_{00})$ abgesenkt

5 / 5 Phänomenologische Theorie des Ladungstransfers

Elektrochemische Redoxreaktion:

$$k_{o} = A \cdot \exp\left(-\frac{\Delta G_{o}^{*}(\phi)}{kT}\right)$$
$$k_{R} = A \cdot \exp\left(-\frac{\Delta G_{R}^{*}(\phi)}{kT}\right)$$

Ladungstransferkoeffizient α : 0 < α < 1 (typisch $\alpha \approx 0.5$)

$$\Delta G_{O}^{*}(\phi) = \Delta G_{O}^{*}(\phi_{00}) - \alpha n e_{0}(\phi - \phi_{00});$$

$$\Delta G_{R}^{*}(\phi) = \Delta G_{R}^{*}(\phi_{00}) + (1 - \alpha) n e_{0}(\phi - \phi_{00});$$

$$j = n N_A e_0 \left(k_O a_R^S - k_R a_O^S \right); \quad k^0 \equiv k_O (\phi_{00}) = k_R (\phi_{00}) = A \exp\left(-\frac{\Delta G_O^*(\phi_{00})}{kT}\right)$$

→ Butler-Volmer Gleichung

$$j(\phi) = n N_A e_0 k^0 \left[a_R^S \exp\left(\frac{\alpha n e_0(\phi - \phi_{00})}{kT}\right) - a_0^S \exp\left(-\frac{(1 - \alpha) n e_0(\phi - \phi_{00})}{kT}\right) \right]$$

5/6 Phänomenologische Theorie des Ladungstransfers

Übliche Formulierung der Butler-Volmer Gleichung

$$j = j_0 \left\{ \exp\left(\frac{\alpha n e_0}{kT}\eta\right) - \exp\left(-\frac{(1-\alpha)n e_0}{kT}\eta\right) \right\} = j_0 \left\{ \exp\left(\frac{\alpha n F}{RT}\eta\right) - \exp\left(-\frac{(1-\alpha)n F}{RT}\eta\right) \right\}$$

5 / 7 Beispiel für Elektronentransfer

Tafel plots for the reduction of Mn(IV) to Mn(III) at Pt in 7.5 M H₂SO₄ at 298 K.

K. J. Vetter and G. Manecke, Z. Physik. Chem. (Leipzig), 195, 337 (1950).

5/8 Transportmechanismen

Transportprozesse in Lösungen:

- Diffusion:
 - dominanter Prozess nahe Grenzfläche
- Konvektion:
 - dominanter Prozess in Volumen der Flüssigkeit (abh. von hydrodynamischen Bedingungen)
- Migration:
 - wichtig falls aktive Spezies in einer Elektrodenreaktion primär für Ladungstransport in Elektrolyt verantwortlich ist

5/9 Nernst'sche Diffusionsschicht

mol/l Diffusion Konvektion Beginn der Grenzflächenreaktion *t*=0 $t \geq t_N \to \infty$ $t_2 > t_1$ concentration \rightarrow Verarmung aktiver Spezies 2a nahe Grenzfläche Ć_S, ("Nernst'sche Diffusionsschicht") C_0 $c_{s} > 0$: reaktionskontrolliert $c_s = 0$: diffusionskontrolliert $\delta(t_1)$ $\delta(t_2)$ $\delta_{N} = \delta(t_{N})$ Stehende Lösung: n $\delta_N \approx 0.5$ mm; $t_N \approx 30 - 60$ s Abstand von Grenzfläche Gasblasenrührung: $\delta_N \approx 1 \,\mu \,\mathrm{m}$ Rotierende Scheibe: $t_N \approx 1 \,\mathrm{s}$

Stationäre Bedingungen:

Reaktionsrate = Diffusionsrate \rightarrow

Transportrate:
$$j_p = D\left(\frac{dc}{dx}\right)_{x=0} = D\frac{c_0 - c_s}{\delta_N}$$

 \rightarrow Stromdichte:

$$j = nF \cdot D \cdot \left(\frac{dc}{dx}\right)_{x=0} = nF \cdot D \cdot \frac{c_0 - c_s}{\delta_N}$$

Diffusionslimitierte Stromdichte:

$$j_{\rm lim} = nF \cdot D \cdot \frac{c_0}{\delta_N}$$

5 / 10 Nernst'sche Diffusionsschicht

Beginn der Grenzflächenreaktion

 → Verarmung aktiver Spezies nahe Grenzfläche ("Nernst'sche Diffusionsschicht")
 c_S > 0: reaktionskontrolliert
 c_S = 0: diffusionskontrolliert

Stehende Lösung: $\delta_N \approx 0.5$ mm; $t_N \approx 30 - 60$ s Gasblasenrührung: Rotierende Scheibe: $\delta_N \approx 1 \ \mu \text{ m}$

Interferogram während Cu-Abscheidung

Stationäre Bedingungen:

Reaktionsrate = Diffusionsrate \rightarrow Transportrate: $j_p = D\left(\frac{dc}{dx}\right)_{x=0} = D\frac{c_0 - c_s}{\delta_N}$

 \rightarrow Stromdichte:

$$j = nF \cdot D \cdot \left(\frac{dc}{dx}\right)_{x=0} = nF \cdot D \cdot \frac{c_0 - c_s}{\delta_N}$$

Diffusionslimitierte Stromdichte:

$$j_{\rm lim} = nF \cdot D \cdot \frac{c_0}{\delta_N}$$

5 / 11 Einfluss des Massentransports auf EC Strom

5 / 12 Einfluss des Massentransports auf elektrochemischen Strom

Stromtransiente nach Potentialsprung

Für
$$t < t_N$$
: $j(t) = nF \cdot \left(\frac{D}{\pi}\right)^{\frac{1}{2}} \frac{c_0 - c_s}{t^{\frac{1}{2}}}$
Mod // Diffusion Konvektion
 $t \to \infty$
 0 δ_N Abstand von Grenzfläche

5/13 Chronoamperometrie

Figure 8.58: Cyclic voltammograms of $1T-TaS_2$ in 0.01 M CuSO₄ + 0.01 M H₂SO₄ solution (scan rate 20 mV/sec.)

PhD thesis, S. Dora(2001)

5/14 Chronoamperometrie

Beispiel: Ni Passivierung in H₂SO₄

Fig. 4.2.3 Current transient for a freshly H₂-annealed Ni(111) single crystal electrode in 0.05 M H₂SO₄ solution during a potential step from -0.40 to 0.50 V. Previously, the sample was cathodically reduced by 15 min polarization at -0.60 V. In (a) the current density and in (b) the logarithm of the current density are plotted PhD thesis J. Scherer (2001)

5/15 Chronopotentiometrie

Stromsprung

Hamann/Vielstich, Elektrochemie

5/16 Chronopotentiometrie

Beispiel: Cu Abscheidung auf TaS2 0,1 1.8 0.5 mA/cm² 1.5 0,0 1.2 0.9 -0,1 0.6 j/mA.cm⁻² 0.3 >^{56-0,2} 0.0 -0.3 -0,3 -0.6 -0.9 -0,4 -1.2 -1.5 -0,5 -1.8 40 100 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 20 60 80 0 V/SCE Time/sec

Figure 8.58: Cyclic voltammograms of 1T-TaS₂ in 0.01 M CuSO₄ + 0.01 M H₂SO₄ solution (scan rate 20 mV/sec.)

PhD thesis, S. Dora(2001)

5 / 17 Einfluss des Massentransports auf elektrochemischen Strom

Zyklovoltammetrie faradayscher Prozesse mit Massentransport

5 / 18 Kontrollierte Konvektion

Untersuchungen und technische Anwendungen erfordern wohldefinierten (und hohen) Massentransport

Probleme mit Massentransport in Grenzflächenreaktionen

Planare Elektroden in stagnanten Lösungen:

- Dicke der Nernstschicht schlecht definiert
- Geringe diffusionslimitierte Transportrate
 Beispiel: 10⁻³ M Lösung der aktiven Spezies (= Sättigungskonz. für gelöste Gase)

$$\rightarrow j_{diff} = nF \cdot D \cdot \frac{c_0}{\delta_N} = 96485 \frac{C}{Mol} \cdot 10^{-5} \frac{cm^2}{s} \cdot \frac{10^{-3} Mol \cdot dm^{-3}}{0.5mm} \approx 20 \mu A cm^{-2}$$

bzw. $j_p \approx 5$ ML/min

Methoden für Messungen unter definierten hydrodynamischen Bedingungen

- Rotierende (Scheiben-, Ring-, Zylinder-) Elektroden
- turbulente Rohrströmung
- Dünnschichtflusszellen
- Mikroelektroden
- → quantitativ berechenbare Transportraten deutlich erhöhter Massentransport

5 / 19 Rotierende Scheibenelektrode

T Schmidt, Doktorarbeit, Universität Ulm (2000)

5 / 20 Mikroelektroden

Spärische Diffusion stationäre Bedingungen: $\frac{dc}{dt} = 0 = \frac{d^2c}{dr^2} + \frac{2}{r}\frac{dc}{dr}$

Ansatz: $c(r) = A + B \cdot r^{\alpha}$

in DGL
$$\rightarrow \alpha = -1$$
: $c(r) = c_0 + B/r$

Randbedingungen: Reaktionsrate > Diffusionsrate $\rightarrow c(r_0) = 0$

 $\rightarrow c(r) = c_0 \cdot \left(1 - r_0 / r\right)$

Transportrate (Teilchenflussdichte):

$$j_p(r) = D\frac{dc}{dr} = -D\frac{c_0 r_0}{r^2}$$

Stromdichte = Fluss an Oberfläche:

$$j_{diff} = \left| nF \cdot j_p(r_0) \right| = nF D \frac{c_0}{r_0}$$

Weitere Vorteile:

- kleines Volumen (\rightarrow Biologie/Medizin)
- kleine Mengen an Reaktanden (\rightarrow Spurenanalyse)
- kleine Ströme (→ Elektrolyte geringer Leitfähigkeit)

5 / 21 Mikroelektroden

R.M. Wightman and D.O. Wipf, in: Electroanal Chem. 15, AJ Bard (Ed.), Dekker

5/22 Kristallwachstum

Wachstum/Auflösung an Stufen

Wachstum/Auflösung von Cu(100) in HCl

STM, 0.01 M HCl, -0.23 $\mathrm{V}_{\mathrm{SCE}}$

O.M. Magnussen, et al., *Electrochim. Acta*, <u>46</u> (2001) 3725

5/23 Kristallwachstum

Step bunching

Wachstum an Schraubenversetzungen

Ag-Macrostep Wachstum

Y. Fukunaka, et al.

30 µm

5/24 Kristallwachstum

Wachstum über Bildung von Kristallisationskeimen

Ni auf Ag(111) (Schichtdicke 3.7 Atomlagen) E. Sibert, et al., Surf. Sci. (2004)

5/25 Kristallwachstum

Textur (Mikrostruktur) abgeschiedener Schichten

(a)

5/26 Kristallwachstum

Dendritisches Wachstum

Cu-Abscheidung Y. Fukunaka et al.

Interferenzmikroskopie

5 / 27 Kristallwachstum

 100 μm

 0 min

 10 min

 20 min

 30 min

Dendritisches Wachstum

Transient LSCM images of Li dendrite growth $(1.0M \text{ LiClO}_4, 0.5 \text{ mA cm}^{-2})$

Y. Fukunaka, et al.

Lithium metal dendrites growing through a polymer electrolyte for battery applications

Image courtesy of G.M. Stone/UC Berkeley and LBNL

5 / 28 Spinellstruktur

