Transportmechanismen

Transportprozesse in Lösungen:

- Diffusion:
- dominanter Prozess nahe Grenzfläche
- Konvektion:
- dominanter Prozess in Volumen der Flüssigkeit
- Migration:
- wichtig falls aktive Spezies in einer Elektrodenreaktion primär für Ladungstransport in Elektrolyt verantwortlich ist
- Mechanismus: Beschleunigung der Ionen in elektrischem Feld, kompensiert durch Stokschen Reibungsterm (ξ := Viskosität):

$$\vec{F} = \vec{F}_E + \vec{F}_R = ze_0\vec{\varepsilon} - 6\pi\xi r_{ion}\vec{v}_{ion} = 0$$

$$\vec{v}_{ion} = u_{ion} \cdot \vec{\varepsilon};$$

Ionenbeweglichkeit
$$u_{ion} \equiv \frac{ze_0}{6\pi\xi r_{ion}}$$

Nernst'sche Diffusionsschicht

Nernst'sche Diffusionsschicht

Beginn der Grenzflächenreaktion

→ Verarmung aktiver Spezies nahe Grenzfläche ("Nernst'sche Diffusionsschicht") $c_s > 0$: reaktionskontrolliert $c_s = 0$: diffusionskontrolliert

Stehende Lösung:

 $\begin{array}{l} \delta_{\scriptscriptstyle N} \approx 0.5 \text{mm;} \ t_{\scriptscriptstyle N} \approx 30-60 \text{s} \\ \text{Gasblasenrührung:} \\ \text{Rotierende Scheibe:} \\ \end{array} \begin{array}{l} \delta_{\scriptscriptstyle N} \approx 1 \, \mu \, \text{m} \\ t_{\scriptscriptstyle N} \approx 1 \, \text{s} \end{array}$

Interferogram während Cu-Abscheidung

Stationäre Bedingungen:

Reaktionsrate = Diffusionsrate
$$\rightarrow$$

Transportrate: $j_p = D\left(\frac{dc}{dx}\right)_{x=0} = D\frac{c_0 - c_s}{\delta_N}$
 \rightarrow Stromdichte:

$$\rightarrow$$
 Stromatchie:

$$j = nF \cdot D \cdot \left(\frac{dc}{dx}\right)_{x=0} = nF \cdot D \cdot \frac{c_0 - c_s}{\delta_N}$$

$$j_{\lim} = nF \cdot D \cdot \frac{c_0}{\delta_N}$$

Einfluss des Massentransports auf elektrochemischen Strom

Stationäre j- ϕ Kurven bei verschiedenen Verhältnissen j $_0$ /j $_{lim}$

Einfluss des Massentransports auf elektrochemischen Strom

Stromtransiente nach Potentialsprung

Einfluss des Massentransports auf elektrochemischen Strom

Zyklovoltammetrie faradayscher Prozesse mit Massentransport

Kontrollierte Konvektion

Untersuchungen und technische Anwendungen erfordern wohldefinierten (und hohen) Massentransport

Probleme mit Massentransport in Grenzflächenreaktionen

- Planare Elektroden in stagnanten Lösungen:
- Dicke der Nernstschicht schlecht definiert
- Geringe diffusionslimitierte Transportrate
- Beispiel: 10-3 M Lösung der aktiven Spezies (= Sättigungskonz. für gelöste Gase)

$$\rightarrow j_{diff} = nF \cdot D \cdot \frac{c_0}{\delta_N} = 96485 \frac{C}{Mol} \cdot 10^{-5} \frac{cm^2}{s} \cdot \frac{10^{-3} Mol \cdot dm^{-3}}{0.5mm} \approx 20 \mu A cm^{-2}$$

bzw. $j_p \approx 5$ ML/min

Methoden für Messungen unter definierten hydrodynamischen Bedingungen

- Rotierende (Scheiben-, Ring-, Zylinder-) Elektroden
- turbulente Rohrströmung
- Dünnschichtflusszellen
- Mikroelektroden
- → quantitativ berechenbare Transportraten deutlich erhöhter Massentransport

Rotierende Scheibenelektrode

T Schmidt, Doktorarbeit, Universität Ulm (2000)

Mikroelektroden

Spärische Diffusion stationäre Bedingungen: $\frac{dc}{dt} = 0 = \frac{d^2c}{dr^2} + \frac{2}{r}\frac{dc}{dr}$

Ansatz: $c(r) = A + B \cdot r^{\alpha}$

in DGL $\rightarrow \alpha = -1$: $c(r) = c_0 + B/r$

Randbedingungen: Reaktionsrate > Diffusionsrate $\rightarrow c(r_0) = 0$

$$c(r) = c_0 \cdot (1 - r_0 / r)$$

Transportrate (Teilchenflussdichte):

$$j_p(r) = D\frac{dc}{dr} = -D\frac{c_0r_0}{r^2}$$

Stromdichte = Fluss an Oberfläche:

$$j_{diff} = \left| nF \cdot j_p(r_0) \right| = nF D \frac{c_0}{r_0}$$

Weitere Vorteile:

 \rightarrow

- kleines Volumen (\rightarrow Biologie/Medizin)
- kleine Mengen an Reaktanden (\rightarrow Spurenanalyse)
- kleine Ströme (→ Elektrolyte geringer Leitfähigkeit)

R.M. Wightman and D.O. Wipf, in: Electroanal Chem. 15, AJ Bard (Ed.), Dekker

5