Stufenfluss-Wachstum

Beispiel: Wachstum/Auflösung von Cu(100) in HCl

lokale Auflösung

lokales Wachstum

0.01 M HCI, -0.23 $V_{\rm SCE}$ 10 Bilder/s

0.01 M HCI, -0.23 V_{SCE} 10 Bilder/s, Zeitlupe: \times 2

O.M. Magnussen, et al., *Electrochim. Acta* , <u>46</u> (2001) 3725

O.M. Magnussen, et al., *Faraday Discuss.*, 121 (2002) 43-52

Einfluss der Grenzflächenstruktur

Beispiel: Wachstum/Auflösung von Cu(100) in HCl

- Auflösung/Wachstum an einzelnen kinks
- kink Struktur bestimmt durch Struktur Grenzfläche (Cl Adschicht) → Auflösung/Wachstum von (√2×√2)R45° Reihen

Einfluss der Grenzflächenstruktur

Beispiel: Einfluss organischer Additive auf die Auflösung von Cu(100)

Mit zunehmender Konzentration c_{BTA} :

- Inhibition der Stufenfluss-Auflösung durch Sub-ML BTA
- Bildung einer schützenden Cu(I)BTA Schicht

M.R.Vogt, et al., J. Electrochem. Soc. 144, L113 (1997).

Einfluss der Grenzflächenstruktur

Orme, C. A. et al., Nature 411, 775 (2001)

Einfluss von Gitterdefekten

Wachstum an Schraubenversetzungen

Keimbildung

Beispiel: Au Abscheidung auf Pt(111)

Abnahme der Au Oberflächendiffusion mit Potential (induziert durch koads. Sulfat)

→ starkes Anwachsen der Sättigungs-Inseldichte (bei konstantem Au Fluss)

E. Sibert, et al., Surf. Sci. 572 (2004) 115

370 nm x 370 nm Abscheidung aus 0.1 M $\rm H_2SO_4$ + 8.4·10⁻⁶ M KAuCl $_4$ \rightarrow 0.02 ML/min.

2D Wachstum

Beispiel: Cu-UPD/Au(111) in H₂SO₄

M. Hölzle, Dissertation, Universität Ulm (1995)

2D Wachstum

Beispiel: Cu-UPD/Au(111) in H₂SO₄ (Peak B)

H. Xia, et al., Phys. Chem. Chem. Phys., 2, 4387-4392 (2000)

Multilagenwachstum

Abhängig von Geschwindigkeit des Transports über Stufen ("interlayer")

→ Bestimmt durch Ehrlich-Schwoebel Barriere E_s für Adatomdiffusion von oberer zu unterer Terrasse (abh. von geometrischer Anordnung der Atome an Stufe)

Beispiel: fcc-Metalle

- (100) Oberflächen: E_s klein \rightarrow Stufenfluss / 2D / 3D Wachstum
- (111) Oberflächen: E_s groß \rightarrow Stufenfluss / 3D Wachstum

Wachstumsuntersuchungen mit Röntgenstreuung

Wachstumsuntersuchungen mit Röntgenstreuung

Potentialsabhängigkeit des Wachstums

Homoepitaktische elektrochemische Abscheidung in Cl-haltigen Elektrolyten

2D Wachstum

3D Wachstum

Ag/Ag(001) unter Vakuumbedingungen

K.J. Caspersen, et al., Phys.Rev. B 65 (2002) 193407

Wachstumsuntersuchungen mit Röntgenstreuung

Potentialsabhängigkeit des Wachstums

Potentialsabhängigkeit des Wachstums

Au(001) in 0.1 M HCl + 0.5 mM HAuCl₄, deposition at 0.0 V

M. Ruge, et al., *Phys.Rev.Lett.*, in press (2014)

Potentialsabhängigkeit des Wachstums

Potentialsabhängigkeit des Wachstums

Homoepitaktische elektrochemische Abscheidung in CI-haltigen Elektrolyten

Potentialsabhängigkeit des Wachstums

Homoepitaktische elektrochemische Abscheidung in CI-haltigen Elektrolyten

F. Golks, et al., PRL, in Druck (2012)

Feld-induzierte Mobilität:

$$E_{diff} = E_{diff}^{0} + \frac{\Delta \mu_{ad} \cdot C_{d}}{\varepsilon_{0}} \cdot \phi$$

DFT Ergebnisse für Adatome auf (100) Oberflächen

	Cu	Ag	Au
E_a	0.81 eV	0.68 eV	0.54 eV
ΔE_a	0.67 eV	0.62 eV	0.64 eV
E_{a0}^{+}	1.48 eV	1.30 eV	1.18 eV
μ_a	0.092e Å	0.076e Å	0.095e Å
$\Delta \mu_a$	0.103e Å	0.072e Å	0.049e Å

J.E.Müller, H. Ibach, *Phys. Rev. B* <u>74</u> (2006) 085408

Potentialsabhängigkeit des Wachstums

"Anomalous" potential dependence of Cu(001) growth in Cl-containing electrolyte:

Anion coadsorbate contributions to dipole moment

