Stufenfluss-Wachstum

Beispiel: Wachstum/Auflösung von Cu(100) in HCI

lokale Auflösung

lokales Wachstum

O.M. Magnussen, et al., *Electrochim. Acta*, <u>46</u> (2001) 3725 O.M. Magnussen, et al., *Faraday Discuss.*, <u>121</u> (2002) 43-52

0.01 M HCl, -0.23 V_{SCE} 10 Bilder/s, Zeitlupe: × 2

Einfluss der Grenzflächenstruktur

Beispiel: Wachstum/Auflösung von Cu(100) in HCl

- Auflösung/Wachstum an einzelnen kinks
- kink Struktur bestimmt durch Struktur Grenzfläche (Cl Adschicht) \rightarrow Auflösung/Wachstum von ($\sqrt{2} \times \sqrt{2}$)R45° Reihen

O.M. Magnussen, et al., *Electrochim. Acta*, <u>46</u> (2001) 3725 O.M. Magnussen, et al., *Faraday Discuss.*, <u>121</u> (2002) 43-52

Einfluss der Grenzflächenstruktur

Beispiel: Einfluss organischer Additive auf die Auflösung von Cu(100)

Mit zunehmender Konzentration c_{BTA} :

- Inhibition der Stufenfluss-Auflösung durch Sub-ML BTA
- Bildung einer schützenden Cu(I)BTA Schicht

M.R.Vogt, et al., *J. Electrochem. Soc.* 144, L113 (1997).

Einfluss der Grenzflächenstruktur

Orme, C. A. et al., Nature 411, 775 (2001)

Einfluss von Gitterdefekten

Keimbildung

Beispiel: Au Abscheidung auf Pt(111)

Abnahme der Au Oberflächendiffusion mit Potential (induziert durch koads. Sulfat)

→ starkes Anwachsen der Sättigungs-Inseldichte (bei konstantem Au Fluss)

E. Sibert, et al., Surf. Sci. 572 (2004) 115

2D Wachstum

2D Wachstum

H. Xia, et al., Phys. Chem. Chem. Phys., 2, 4387-4392 (2000)

Multilagenwachstum

Abhängig von Geschwindigkeit des Transports über Stufen ("interlayer")

→ Bestimmt durch Ehrlich-Schwoebel Barriere E_s für Adatomdiffusion von oberer zu unterer Terrasse (abh. von geometrischer Anordnung der Atome an Stufe)

Beispiel: fcc-Metalle

- (100) Oberflächen: E_s klein \rightarrow Stufenfluss / 2D / 3D Wachstum
- (111) Oberflächen: $\rm E_s$ groß \rightarrow Stufenfluss / 3D Wachstum

Wachstumsuntersuchungen mit Röntgenstreuung

Wachstumsuntersuchungen mit Röntgenstreuung

Potentialsabhängigkeit des Wachstums

Homoepitaktische elektrochemische Abscheidung in Cl-haltigen Elektrolyten

3D Wachstum

Ag/Ag(001) unter Vakuumbedingungen

K.J. Caspersen, et al., Phys.Rev. B 65 (2002) 193407

Wachstumsuntersuchungen mit Röntgenstreuung

Potentialsabhängigkeit des Wachstums

Au(001) in 0.1 M HCl + 0.5 mM HAuCl₄, deposition at 0.0 V

M. Ruge, et al., *Phys.Rev.Lett.*, in press (2014)

Potentialsabhängigkeit des Wachstums

Potentialsabhängigkeit des Wachstums

Homoepitaktische elektrochemische Abscheidung in Cl-haltigen Elektrolyten

Potentialsabhängigkeit des Wachstums

Homoepitaktische elektrochemische Abscheidung in CI-haltigen Elektrolyten

Au / Au(001)3D
$$\rightarrow$$
 layer-by-layer \rightarrow step flow $E_{Me / Me^{2+}}$ Cu / Cu(001)step flow \rightarrow layer-by-layer \rightarrow 3D

F. Golks, et al., PRL, in Druck (2012)

Feld-induzierte Mobilität:

DFT Ergebnisse für Adatome auf (100) Oberflächen

	Cu	Ag	Au
Ea	0.81 eV	0.68 eV	0.54 eV
ΔE_a	0.67 eV	0.62 eV	0.64 eV
E_{a0}^{+}	1.48 eV	1.30 eV	1.18 eV
μ_a	0.092 <i>e</i> Å	0.076e Å	0.095 <i>e</i> Å
$\Delta \mu_a$	0.103 <i>e</i> Å	0.072 <i>e</i> Å	0.049 <i>e</i> Å

J.E.Müller, H. Ibach, Phys. Rev. B 74 (2006) 085408

Potentialsabhängigkeit des Wachstums

