4-3 / 1 Atomorbitale

Normierte vollständige Eigenfunktionen des Wasserstoff-Atoms ("Orbitale"):

$$\psi(r, \mathcal{G}, \varphi) = R_{nl}(r) \cdot Y_{lm}(\mathcal{G}, \varphi)$$

- Charakterisiert durch:
 - Hauptquantenzahl n = 1, 2, ...
 - Drehimpulsquantenzahl l = 0, 1, ..., n-1 (n Werte)
 - magnetische Quantenzahl m mit $-l \le m \le l$ (2l + 1 Werte)
- räumliche Aufenthaltswahrscheinlichkeiten: $\left|\psi(r,\mathcal{G},\varphi)\right|^2$

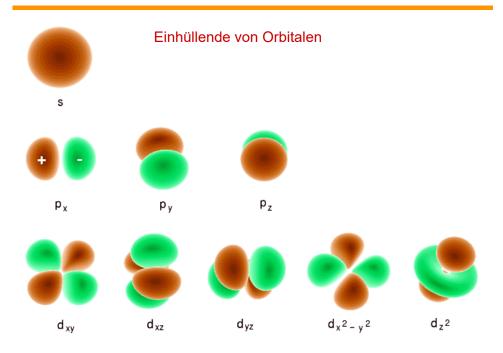
4-3 / 2 Orbitale

Nomenklatur → Angabe von:

- Hauptquantenzahl n als Zahl
- Drehimpulsquantenzahl über Zustandsbezeichung:

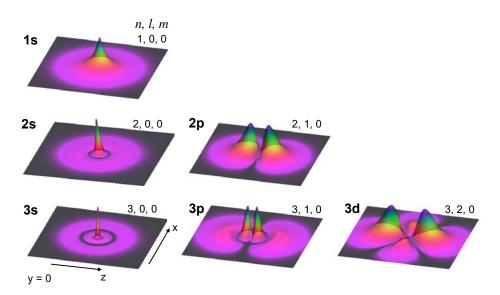
s:
$$l = 0$$

p:
$$l = 1$$

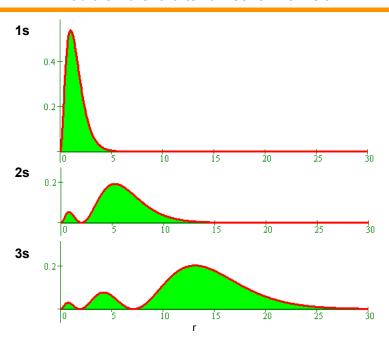

d:
$$l = 2$$

f:
$$l = 3$$

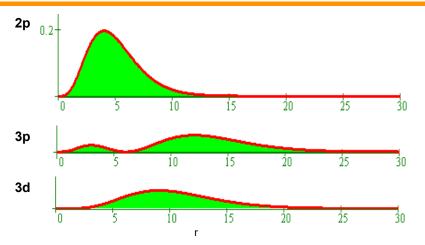
g:
$$l = 4$$


- Angabe von Orbital (m oder Linear-kombination mehrerer $Y_{l\,m}$ mit gleichem l) über Index
- Der Energieeigenwert der Zustände ist k-fach entartet. Entartungsgrad: $k = \sum_{l=0}^{n-1} (2l+1) = n^2$

4-3 / 3 Orbitale



4-3 / 4 Orbitale


Aufenthaltswahrscheinlichkeit in Eigenzuständen des H-Atoms

4-3 / 5 Radiale Aufenthaltswahrscheinlichkeit

4-3 / 6 Radiale Aufenthaltswahrscheinlichkeit

Summe aller Aufenthaltswahrscheinlichkeiten $\left|\psi(r,\mathcal{G},\varphi)\right|^2$ zu einem definierten n ist kugelsymmetrisch ("Elektronenschale")