
6-4 / 1 Laser

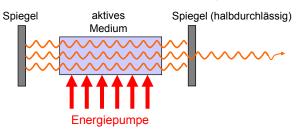
Peer pressure in the laser lab

6-4 / 2 Laser

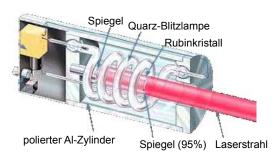
Prinzip:

Light Amplification by Stimulated Emission of Radiation

Eigenschaften:


- hochmonochromatisch: $\Delta v \approx 1$ Hz, $\Delta v/v \le 10^{-15}$
 - → "zeitliche Kohärenz"
- hohe räumliche Bündelung
 - → "räumliche Kohärenz"
- hohe Strahlintensität (bis 10¹³ W im Puls)
 - \rightarrow hohe Brillanz (Photonenfluss/ Δv)
- ultrakurze Lichtpulse möglich (≈ 100 fs)

6-4/3


Aufbau

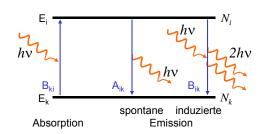
Optisch aktives Medium → stimulierte Emission in wenige Moden In Fabry-Perot Interferometer → Rückkopplung

Bs.: Rubinlaser

Aktives Medium: Cr^{3+} in Al_2O_3 λ = 649nm (0.2 ms Pulse)

6-4/4

Wiederholung optische Übergänge


Beschreibung über Einstein-Koeffizienten

In thermischem Gleichgewicht von Atom mit Strahlungsfeld gilt:

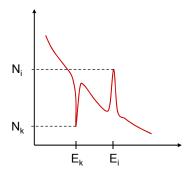
$$B_{ik} = \frac{g_k}{g_i} B_{ki}$$

 $g_k, g_i \equiv \text{Entartungsgrad}$

$$A_{ik} = \frac{8\pi h v^3}{c^3} B_{ik}$$

6-4/5

Einmoden-Laser


Laserbedingung:

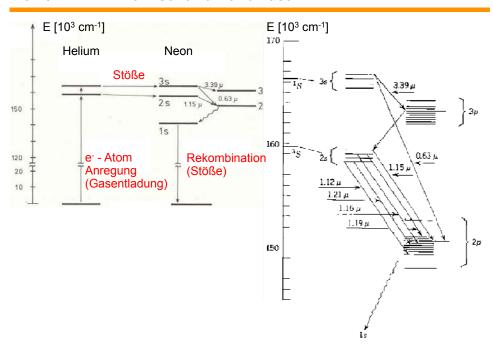
$$N_i - N_k > \frac{8\pi v^2 \cdot \delta v \cdot \tau}{c^3 \cdot t_0}$$

 $\tau \equiv A_{ik}^{-1} \equiv \text{natürliche Lebensdauer}$

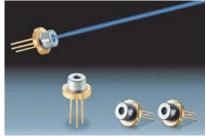
 $t_0 \equiv$ Lebensdauer von Photon in Laser

 \rightarrow Inversion notwendig: $N_i > N_k$

6-4 / 6 CT Laserbedingung


Welche Anforderungen an die Konstruktion eines Lasers lassen sich unmittelbar aus der Laserbedingung

$$N_i - N_k > \frac{8\pi v^2 \cdot \delta v \cdot \tau}{c^3 \cdot t_0}$$


ableiten?

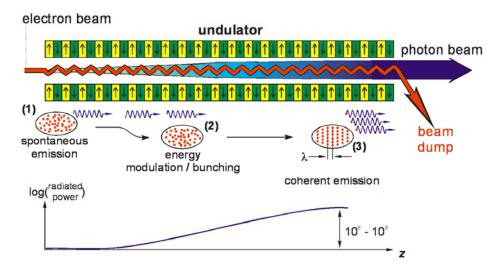
- 1. der verwendete optische Übergang sollte eine möglichst kleine Linienbreite besitzen.
- 2. die Spiegel des Resonators sollten möglichst gut sein.
- 3. je kürzer die Wellenlänge, desto schwieriger ist die Realisierung eines Lasers.
- 4. alle diese Punkte gelten.
- 5. keiner dieser Punkte gilt.

6-4 / 7 Termschema HeNe-Laser

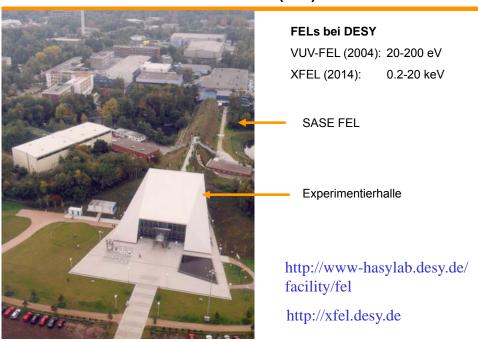
6-4 / 8 Beispiele für Lasertypen

Laserdiode 405 nm 7 mW

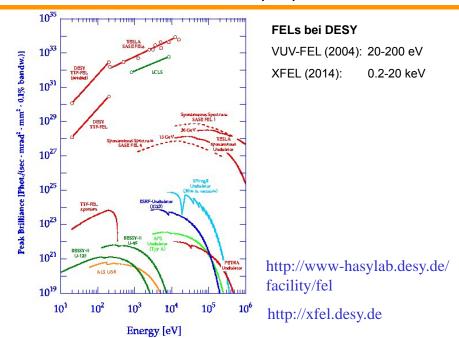
National Ignition Facility (USA) 350 nm 10^{12} W (in 10 ns Puls)


6-4/9 Freie-Elektronen-Laser (FEL)

Elektronenstrahl Von Beschleuniger Undulator Eingehende Strahlung Verstärkte Strahlung


Lichtfeld

6-4 / 10 Freie-Elektronen-Laser (FEL)


Funktionsprinzip Self-Amplified Spontaneous Emission (SASE) FEL:

6-4 / 11 Freie-Elektronen-Laser (FEL)

6-4 / 12 Freie-Elektronen-Laser (FEL)

