Transportprozesse

Räumliche Inhomogenität in Stoffzusammensetzung oder Temperatur führt auf mikroskopischer Skala zu Transport von Teilchen bzw. Energie, der auf einen Ausgleich dieser Inhomogenität hingerichtet ist.

Relevante Prozesse:

- Bewegung makroskopischer Gas-/Flüssigkeitsvolumina über Strömungen
- Statistische Bewegung einzelner Moleküle (Diffusion) oder der Molekülenergie (Wärmeleitung)
- Energietransport über Strahlung

In Flüssigkeiten und Gasen führen die Moleküle aufgrund ihrer thermischen Energie eine schnelle Zufallsbewegung aus \rightarrow
Nettotransport von Teilchen von Gebiet höherer in das Gebiet niedrigerer Konzentration (Diffusion):

-Eigendiffusion

-Fremddiffusion

-Interdiffusion

In einem Medium, in dem die Dichte der diffundierenden Teilchen $n(x)$ entlang einer Richtung x variiert, existiert ein Netto-Teilchenstrom durch eine Fläche A, der durch die Differenz der von beiden Seiten ankommenden Teilchen gegeben ist. Für Teilchen mit der Geschwindigkeit v_{x} in x-Richtung ist treffen von einer Seite $\mathrm{d} N_{V x}$ Teilchen pro Zeit $d t$ auf A :

$$
\begin{aligned}
& d N_{v_{x}}=\frac{1}{2} \frac{N\left(v_{x}\right)}{V} \cdot A v_{x} d t \\
& \frac{d N^{+}}{d t}=\int_{0}^{\infty} d v_{x}^{\prime} \frac{1}{2} \frac{N\left(v_{x}^{\prime}\right)}{V} A v_{x}^{\prime} \\
& \begin{array}{l}
=\frac{1}{2} A \cdot \underbrace{\frac{N}{V}}_{n} \cdot \underbrace{}_{\frac{q}{N} \int_{0}^{\infty} N\left(v_{x}^{\prime}\right) v_{x}^{\prime} d v_{x}^{\prime}}=\frac{1}{2} A-n \cdot \overline{v_{x}}
\end{array} \\
& =\frac{1}{6} A n \bar{v}
\end{aligned}
$$

In einem Medium, in dem die Dichte der diffundierenden Teilchen $n(x)$ entlang einer Richtung x variiert, ist der Netto-Teilchenstrom durch eine Fläche A durch die Differenz der von beiden Seiten ankommenden Teilchen gegeben:

$$
\begin{aligned}
& \frac{d W}{d A}=\frac{d N^{+}}{d A}-\frac{d N^{-}}{d A} \\
& \propto \frac{1}{6} v\left[\left.(n(x)) \frac{d n\left(x^{\prime}\right)}{d x^{\prime}}\right|_{x^{\prime}=x^{2}} \lambda\right)-\left(n(x)+\left.\frac{d n\left(x^{\prime}\right)}{d x^{\prime}}\right|_{\substack{x^{\prime}=x-\frac{d n}{d x} \lambda}} \lambda\right]_{n} \quad n+\frac{d n}{d x} \lambda \\
& =-\frac{1}{3} A \bar{v} \frac{d n}{d x} \cdot \lambda \\
& \text { Teilchenstrem }= \\
& j_{x}=\frac{1}{A} \cdot \frac{d N}{d A}=-D \cdot \frac{d n}{d x}
\end{aligned}
$$

In einem Medium, in dem die Dichte der diffundierenden Teilchen $n(x)$ entlang einer Richtung x variiert, ist der Netto-Teilchenstrom durch eine Fläche A durch die Differenz der von beiden Seiten ankommenden Teilchen gegeben:

$$
\frac{d N}{d t}=\frac{d N^{+}}{d t}-\frac{d N^{-}}{d t} \propto A \cdot \bar{v} \cdot \lambda \cdot \frac{d n}{d x}
$$

Damit ist die Teilchenstromdichte:
$j_{x}=\frac{1}{A} \frac{d N}{d t}=-D \cdot \frac{d n}{d x}$

1. Ficksches Gesetz

Der Proportionalitätsfaktor D (,,Diffusionskonstante") hängt von der mittleren Geschwindigkeit \bar{v} und der mittleren freien Weglänge λ der Teilchen $a b$:
$D=\frac{1}{3} \bar{v} \cdot \lambda$
Im dreidimensionalen Fall ist die
Teilchenstromdichte:
$\vec{j}=\left(\begin{array}{l}j_{x} \\ j_{y} \\ j_{z}\end{array}\right)=-D\left(\begin{array}{l}d n / d x \\ d n / d y \\ d n / d z\end{array}\right) ; \quad \vec{j}=-D \cdot \vec{\nabla} n \quad \quad{ }^{z} \longleftrightarrow^{y}$

Falls Teilchen im Medium nicht erzeugt oder vernichtet werden, können sie nur durch Diffusionsströme in einen bestimmten Raumbereich transportiert werden. Sind diese räumlich inhomogen, ist die Änderung der Teilchendichte $n(x, t)$ mit der Zeit gleich der Ableitung der Teilchenstromdichte:

$$
\begin{aligned}
& \frac{\partial n}{\partial t}=-\frac{d j_{x}}{d x} \\
& \frac{A V}{d t}=A \cdot\left[j_{x}(x)-j_{x}(x+d x)\right] \\
& \Rightarrow \frac{\partial n(x t)}{\partial t}=-\frac{j_{x}^{\prime}(x+d x)-j_{x}(x)}{d x}=-\frac{d j_{x}(x)}{d x} \\
& \text { Mit } j_{x}=-D \cdot \frac{d n}{d x} \\
& \frac{\partial n(x, A)}{\partial t}=D \cdot \frac{\partial^{2} n(x, t)}{\partial \cdot \frac{x^{2}}{\partial}}
\end{aligned}
$$

Falls Teilchen im Medium nicht erzeugt oder vernichtet werden, können sie nur durch Diffusionsströme in einen bestimmten Raumbereich transportiert werden. Sind diese räumlich inhomogen, ist die Änderung der Teilchendichte $n(x, t)$ mit der Zeit gleich der Ableitung der Teilchenstromdichte:
$\frac{\partial n}{\partial t}=-\frac{d j_{x}}{d x}$

$$
\frac{\partial n}{\partial t}=-\left(\frac{d j x}{d x}+\frac{d j_{i}}{d y}+\frac{d j_{z}}{d z}\right)
$$

Mit dem 1. Fickschen Gesetz ergibt sich:

$$
\frac{\partial n(x, t)}{\partial t}=D \frac{\partial^{2} n(x, t)}{\partial x^{2}} \quad \text { 2. Ficksches Gesetz }
$$

Bzw. im dreidimensionalen Fall:

$$
\begin{aligned}
\frac{\partial n(\vec{r}, t)}{\partial t} & =D\left[\frac{\partial^{2} n(\vec{r}, t)}{\partial x^{2}}+\frac{\partial^{2} n(\vec{r}, t)}{\partial y^{2}}+\frac{\partial^{2} n(\vec{r}, t)}{\partial z^{2}}\right] \\
& =D \cdot \vec{\nabla} \cdot \vec{\nabla} n(\vec{r}, t) \equiv D \cdot \Delta n(\vec{r}, t)
\end{aligned}
$$

$$
\Delta \equiv \text { Laplaceoperator }
$$

Unter stationären Bedingungen $(\partial n / \partial t=0)$ muss n eine lineare Ortsabhängigkeit aufweisen.

Diffusion

Zeitlich konstanter Diffusionsstrom:

$$
\frac{\partial n(x, t)}{\partial t}=0 \quad \rightarrow \quad \frac{\partial n(x, t)}{\partial x}=\text { konst }
$$

Diffusion

Typische Diffusionskoeffizienten:

- H_{2} in Luft, $300 \mathrm{~K}: \mathrm{D}=7 \cdot 10^{-1} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
- Na^{+}Ionen in Wasser, $300 \mathrm{~K}: \mathrm{D}=1.3 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
- Ag in $\mathrm{Cu}: \mathrm{D}(900 \mathrm{~K})=1.4 \cdot 10^{-11} \mathrm{~cm}^{2} \mathrm{~s}^{-1}, \mathrm{D}(1000 \mathrm{~K})=1.6 \cdot 10^{-10} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

In Abwesenheit von Konvektion findet in einem Medium, in dem die Temperatur $T(x)$ entlang einer Richtung x variiert, Wärmetransport über Wärmeleitung statt. Dabei ist die Wärmeflussdichte durch den Temperaturgradienten gegeben:
$j_{Q}=\frac{1}{A} \frac{d Q}{d t}=-\Lambda \cdot \frac{d T}{d x}$ bzw. $\vec{j}_{Q}=-\Lambda \cdot \vec{\nabla} T$

$$
T=T(x)
$$

Der Wärmestrom ergibt sich aus dem Netto-Energietransport:

$$
\begin{aligned}
& j_{Q}=j_{Q}^{+}-j \bar{j} Q \\
& =\frac{1}{6} \bar{v}(x-\lambda) n(x-\lambda) U(x-\lambda)-\frac{1}{6} \bar{v}(x+\lambda) n(x+\lambda) U(x+\lambda)
\end{aligned}
$$

Bei zeitlich konstanter Konzentration $\left(\frac{\partial n(x, t)}{\partial t}=0\right)$ gilt:
Stolfstróme $j_{+}=j$ -

$$
\begin{aligned}
& \bar{v}(x-\lambda) n(x-\lambda)=\bar{v}(x+\lambda) \cdot n(x+\lambda)=n \cdot \bar{v} \\
& \dot{F}_{Q}=\frac{1}{6} n \bar{v}[u(x-\lambda)-U(x+\lambda)] \\
& =\frac{1}{6} n \bar{v}\left[U(x)+\left.\frac{d U}{d x^{\prime}}\right|_{x^{\prime}=x} \cdot(-\lambda)-U(x)-\left.\frac{d U}{d x_{-}^{\prime}}\right|_{x^{\prime}=x} \cdot \lambda\right]
\end{aligned}
$$

mit $d U=C_{v} \cdot d T$ gilt:

$$
j_{Q}=-\frac{1}{3} n \bar{v} \lambda \frac{d u}{d x}=-\frac{1}{3} n v \lambda c_{V} \frac{d T}{d x}
$$

In Abwesenheit von Konvektion findet in einem Medium, in dem die Temperatur $T(x)$ entlang einer Richtung x variiert, Wärmetransport über Wärmeleitung statt.
Dabei ist die Wärmeflussdichte durch den Temperaturgradienten gegeben:
$j_{Q}=\frac{1}{A} \frac{d Q}{d t}=-\Lambda \cdot \frac{d T}{d x} \quad$ bzw. $\quad \vec{j}_{Q}=-\Lambda \cdot \vec{\nabla} T$
Die Wärmeleitzahl Λ ist dabei für ein ideales Gas $\Lambda=\frac{1}{3} n \cdot \bar{v} \cdot \lambda \cdot c_{V}$
Aufgrund des Wärmestroms ändert sich die Temperatur eines Stoffs mit der Dichte ρ und der spezifischen Wärmekapazität c in einem Volumenelement $\mathrm{d} V$:
$\frac{d Q}{d t}=-\frac{d f_{Q}}{d x} \cdot d V=+\Lambda \cdot \frac{\partial^{2} T}{\partial x^{2}} \cdot d V ; d T=c \cdot \underbrace{d m} \cdot d Q$
$\frac{d T}{d t}=\Lambda \quad=\frac{d^{2} T}{d x^{2}} \quad=c \cdot \rho \cdot d V \cdot d \psi$

Die zeitliche Änderung der Temperatur eines Stoffs ist dann:
$\frac{\partial T(x, t)}{\partial t}=\frac{\Lambda}{\rho c} \cdot \frac{\partial^{2} T(x, t)}{\partial x^{2}} \quad$ bzw. $\frac{\partial T(\vec{r}, t)}{\partial t}=\frac{\Lambda}{\rho c} \cdot \Delta T(\vec{r}, t)$

$\Lambda(\mathrm{Fe}, 300 \mathrm{~K})=67 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}, \Lambda(\mathrm{Cu}, 300 \mathrm{~K})=393 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$

$5 / 14$
 Wärmeleitung

Typische Wärmeleitzahlen:
$\cdot \Lambda(\mathrm{Fe}, 300 \mathrm{~K})=67 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}, \Lambda(\mathrm{Cu}, 300 \mathrm{~K})=393 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
$\cdot \Lambda($ Eis $)=2.2 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
$-\Lambda($ Glas $)=0.7 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
$\bullet \Lambda($ Wasser $)=0.6 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$

- $\Lambda(\mathrm{Luft})=0.025 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$

Erwärmung von Flüssigkeiten oder Gasen von unten führt zu thermischer Ausdehnung und zum Aufsteigen der wärmeren Flüssigkeitsschichten. Solchen Wärmetransport über Strömungen von Flüssigkeiten oder Gasen nennt man Konvektion.

Erwärmung von Flüssigkeiten oder Gasen von unten führt zu thermischer Ausdehnung und zum Aufsteigen der wärmeren Flüssigkeitsschichten. Solchen Wärmetransport über Strömungen von Flüssigkeiten oder Gasen nennt man Konvektion.

Körper emittieren und absorbieren Wärme in Form von elektromagnetischer Strahlung (,,thermische Strahlung" bzw. „Wärmestrahlung").

Körper emittieren und absorbieren Wärme in Form von elektromagnetischer Strahlung („thermische Strahlung" bzw. „Wärmestrahlung").
Die pro Zeit von einem Flächenelement $d A$ in den Raumwinkel $d \Omega$ abgestrahlte Energie ist (integriert über alle Wellenlängen der Strahlung):

$$
\frac{d W}{d t}=E^{*}(T) \cdot d A \cdot d \Omega
$$

Dabei ist $E^{*}(T)$ das Emissionsvermögen der Oberfläche des Körpers.
Das Absorptionsvermögen $A^{*}(T)$ ist definiert als der Bruchteil der auftreffenden Strahlungsenergie, der vom Körper absorbiert wird.

Bogenloinge anf Einheitbleris

Das Verhältnis von Emissions- zu Absorptionsvermögen $E^{*}(T) / A^{*}(T)$ ist nur von der Temperatur aber nicht vom Material abhängig.
Ideale schwarze Körper haben ein Absorptionsvermögen $A^{*}=1$, die von ihnen insgesamt pro Fläche A abgestrahlte Wärmeleistung ist durch das Stefan Boltzmann Gesetz bestimmt:
$\frac{d W}{d t}=\sigma \cdot A \cdot T^{4} ; \quad$ Stefan Boltzmann Konstante $\sigma=5.67051 \cdot 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} K^{-4}$

