Outer-sphere Elektronentransfer

Themen:

- Marcus-Theorie
- · Gerischer-Theorie
- Metall / Molekül / Metall Kontakte

Elektronentransfer in der äußeren Sphäre

Grundidee:

schneller Elektronentransfer durch Tunnelprozesse

langsame thermisch-aktivierte Reorganisation des Komplexes (Bindung von Liganden, Solvation)

Zeitlicher Verlauf bestimmt durch Frank-Condon Prinzip:

- Bewegung des Systems bis zu Punkt auf Schnittfläche ("Reaktionshyperfläche")
- Elektronentransfer
- Bewegung zu neuer Gleichgewichtsposition

Adiabatischer Elektronentransfer: Immer wenn System Schnittfläche überquert erfolgt Übergang $R \leftrightarrow O$ (sonst: nichtadiabat. El. Transfer)

Elektronentransfer in der äußeren Sphäre

Elektronentransfer in der äußeren Sphäre

Berechnung von Position z^S des Sattelpunkts und zugehöriger Energie.

Sattelpunkt:
$$U^{R}(z^{S}) = U^{O}(z^{S})$$

 $U_{0}^{R} + \frac{1}{2}m^{*}(\omega^{*})^{2}(z^{S} - z^{R})^{2} = U_{0}^{O} + \frac{1}{2}m^{*}(\omega^{*})^{2}(z^{S} - z^{O})^{2}$
 $z^{S} = \frac{U_{0}^{R} - U_{0}^{O} + \frac{1}{2}m^{*}(\omega^{*})^{2}((z^{R})^{2} - (z^{O})^{2})}{m^{*}(\omega^{*})^{2}(z^{R} - z^{O})}$

 \rightarrow Aktivierungsenergien für Oxidation und Reduktion:

$$E_A^{ox} = \frac{1}{4\lambda} \left(\lambda + U_0^O - U_0^R\right)^2$$
$$E_A^{red} = \frac{1}{4\lambda} \left(\lambda + U_0^R - U_0^O\right)^2$$

Reorganisationsenergie:

$$\lambda \equiv \frac{1}{2}m^*(\omega^*)^2 \left(z^R - z^O\right)^2$$
$$= \frac{1}{2}\sum m_i \omega_i^2 \left(q_i^R - q_i^O\right)^2$$

(kann über Modelle des Komplexes abgeschätzt werden)

Elektronentransfer in der äußeren Sphäre

Reaktionsraten: $k^a = A \cdot \exp\left(-\frac{E_A^a}{k_B T}\right)$

Vorfaktor A:

- adiabatische Reaktion: vollständig bestimmt durch Dynamik der inneren/äußeren Sphäre
- nichtadiabatische Reaktion: abhängig von elektronischer Überlappung des Anfangs- und Endzustandes

Elektronische Struktur der Elektrode

Verbessertes Modell → berücksichtige elektronische Struktur Oxidation an Metall: e- Transfer in Leitungsband Marcus Theorie: $|e_0\eta| = |U_0^R - U_0^O|$ enthält (variable) e Energie ε \rightarrow Besser: $k^{ox}(\varepsilon) \propto \exp\left(-\frac{(\lambda - (e_0\eta - \varepsilon))^2}{4\lambda k_BT}\right)$ EF CAN

 $|e_0\eta| < \lambda$: max. Transferrate bei $E_F(\varepsilon = 0)$; <u>Aber</u>: Dies gilt nicht mehr für $|e_0\eta| > \lambda$ Allgemeingültige Behandlung \rightarrow summiere über alle ε : Anzahl unbesetzter Zustände: $D(\varepsilon) \cdot (1 - f_{FD}(\varepsilon)); \quad f_{FD}(\varepsilon) = \frac{1}{\exp(\varepsilon/k_B T) + 1}$ \rightarrow Rate und Stromdichte (bei c^R=c^O=c): $k^{ox}(\varepsilon) = A \cdot D(\varepsilon) \cdot \left(1 - f_{FD}(\varepsilon)\right) \exp\left(-\frac{\left(\lambda - (e_0\eta - \varepsilon)\right)^2}{\left(1 - f_{FD}(\varepsilon)\right)^2}\right)$

$$j_{a} = cF \int k^{ox} d\varepsilon = cF \int A \cdot D(\varepsilon) \cdot \left(1 - f_{FD}(\varepsilon)\right) \cdot \exp\left(-\frac{\left(\lambda + \varepsilon - e_{0}\eta\right)^{2}}{4\lambda k_{B}T}\right) d\varepsilon$$
Analog:
$$j_{c} = cF \int k^{red} d\varepsilon = cF \int A \cdot D(\varepsilon) \cdot f_{FD}(\varepsilon) \cdot \exp\left(-\frac{\left(\lambda - \varepsilon + e_{0}\eta\right)^{2}}{4\lambda k_{B}T}\right) d\varepsilon$$

1

Elektronische Struktur der Elektrode

Vereinfachende Näherung \rightarrow Zustandsdichte nahe E_F konstant: $D(\varepsilon) \approx D(0) \equiv D_F$ $|e_0\eta| << \lambda: j_a \approx FAc\pi D_F k_B T \cdot \exp\left(-\frac{\lambda - 2e_0\eta}{4k_B T}\right)$ $T << T_F \rightarrow f_{FD}(\varepsilon) \approx \begin{cases} 1\\0 \end{cases}$ für $\varepsilon \begin{cases} <\\> \end{cases} 0$ (gute Näherung für $|e_0\eta| >> k_B T$) $j_a \approx FAcD_F \sqrt{\pi\lambda k_B T} \cdot \operatorname{erfc}\left(\frac{\lambda - e_0\eta}{\sqrt{4\lambda k_B T}}\right)$ $\operatorname{erfc}(x) \equiv 1 - \operatorname{erf}(x)$ $= \frac{2}{\sqrt{\pi}} \int_x^{\infty} \exp(-y^2) dy$ $|e_0\eta| >> \lambda:$ Grenzstromdichte: $j_a \approx j_{iim} = FAcD_F \sqrt{4\pi\lambda k_B T}$ Analog für kathodische Stromdichte j_c

η/V

Elektronische Struktur der Elektrode

Physikalische Interpretation $D(\varepsilon) \cdot (1 - f_{FD}(\varepsilon)) =$ Wahrsch. unbesetztes Energieniveau ε auf Elektrode zu finden $W^{R}(\varepsilon,\eta) \equiv c \cdot \left(4\pi\lambda k_{B}T\right)^{-\frac{1}{2}} \exp\left(-\frac{\left(\lambda + \varepsilon - e_{0}\eta\right)^{2}}{4\lambda k_{B}T}\right) = \text{(normalisierte) Wahrsch. einen besetzten (reduzierten) Energie$ zustand ε in Lösung zu finden. max. bei: $\varepsilon = -\lambda + e_0 \eta$ $\longrightarrow \quad j_a \propto \int W(\varepsilon, unbesetzt) \cdot W^R(\varepsilon, \eta) \, d\varepsilon$ Analog: Analog: $W^{o}(\varepsilon,\eta) \equiv c \cdot (4\pi\lambda k_{B}T)^{-\frac{1}{2}} \exp\left(-\frac{(\lambda-\varepsilon+e_{0}\eta)^{2}}{4\lambda k_{B}T}\right) =$ (normalisierte) Wahrsch. einen unbesetzten (oxidierten) Energiezustand ε in Lösung zu finden. \rightarrow Gerischer-Diagramm: max. bei: $\varepsilon = \lambda + e_0 \eta$ W⁰ *w*^ο-e₀η λ = Reorganisationsenergie λ ε_F = $\frac{1}{4} \Delta E_{\text{Sattelpunkt}} (\eta = 0)$ ϵ_{F} W^R

Abstandsabhängigkeit der Reaktion

k / cm s⁻¹

Φ

 Δz

C.Miller, M. Grätzel, J.Phys.Chem. 95, 5225 (1991)

Elektronentransfer durch redox-aktive Moleküle

Elektronentransfer in molekularen Schaltern

Elektronische Bauelemente auf Basis redox-aktiver Moleküle

Elektronentransfer in molekularen Schaltern

A.R. Pease et al., Acc. Chem. Res., 34, 433 (2001)