Korrelationsfunktionen in Flüssigkeiten oder Gasen

L. Van Hove, *Phys. Rev.* **95**, 249 (1954)

Energie- und Impulsüberträge von Neutronenspektrometern

Struktur von Kaliumamid

M. Müller, Dissertation (Kiel 1996)

Quasielastische Streuung: Kaliumamid

Neutronen-Flugzeitspektrometer

X-ray absorption spectroscopy in materials science

Martin Müller

Institut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität zu Kiel

- Photoelectric absorption
- XANES
- EXAFS
- Instrumentation
- Examples

AGM. MÜLLER Physik Biologischer Kompositmaterialien

Uses of X-ray spectroscopy

XAFS: X-ray absorption fine structure

local technique:

- element-specific
- diluted or concentrated systems can be studied
- study of disordered systems possible
- wide temperature and pressure range

Photoelectric absorption

(a) ionisation energy of inner shell smaller than X-ray energy

photoemission

of core electron

(a) Photoelectric absorption

(b) Fluorescent X-ray emission

(b,c) two possible secondary processes to fill the hole

(c) Auger electron emission

transmitted intensity decays exponentially with thickness:

$$T = \frac{I}{I_0} = e^{-\mu z}$$
absorption
coefficient
mass density
$$\mu = \begin{pmatrix} \rho_m N_A \\ A \end{pmatrix} \sigma_a \text{ absorption} \text{ cross-section} \\ A \text{ vogadro's number} \text{ atomic mass number}$$

AG M. MÜLLER PHYSIK BIOLOGISCHER

INSTITUT FÜR EXPERIMENTELLE UND ANGEWANDTE PHYSIK DER CAU ZU KIEL

Absorption edges

A G M . M Ü L L E R PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

Fine structure of absorption edges

XAFS accessible elements

	XANES only																	
	EXAFS difficult																	
Н	K-edge EXAFS													He				
Li	Be L3/K-edge EXAFS										B	C	Ν	0	F	Ne		
Na	Mg L3-edge EXAFS										Al	Si	Р	S	Cl	Ar		
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	*	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

A G M . M Ü L L E R Physik Biologischer Kompositmaterialien *

*

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

X-ray absorption spectroscopy in materials science

- Photoelectric absorption
- XANES
- EXAFS
- Instrumentation
- Examples

Energy shift of edge position

energy to eject core electron depends on charge it experiences: edge energy depends on **oxidation state**

Pre-edge peaks

Pre-edge peaks

depend on geometry:

- oxidation state
- site symmetry
- surrounding ligands
- nature of bonding

XANES white lines

in transition metals: area of white line indicates number of empty d-states

AG M. MÜLLER Physik Biologischer Kompositmaterialien

XANES fingerprinting

XANES characteristic of *chemical environment* and *valence state*:

- fingerprinting
- phase analysis by linear combination of known species

X-ray absorption spectroscopy in materials science

- Photoelectric absorption
- XANES
- EXAFS
- Instrumentation
- Examples

Principle of EXAFS oscillations

Interference of wavefunctions of photoelectron and of **backscattered** electrons (from neighbouring atoms)

AG M. MÜLLER PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

Parameters accessible with EXAFS

- **type** of atoms surrounding central absorber ($Z \pm 3$)
- **number** of atoms surrounding absorber (± 20%)
- distances absorber scatterer (accuracy 0.1 Å)

$$\begin{array}{l} \text{The EXAFS formula } \dots \\ q\chi(\mathbf{q}) \propto \sum_{j} N_{j} \frac{t_{j}(\mathbf{q}) \sin(2\mathbf{q}R_{j} + \delta_{j}(\mathbf{q}))}{R_{j}^{2}} \, \mathrm{e}^{-2(\mathbf{q}\sigma_{j})^{2}} \mathrm{e}^{-2R_{j}/\Lambda} \\ \text{CdTe bulk} \end{array}$$

difficult...

- sum over *j* **neighbouring** shells
- goal: extract radii R_j and occupation numbers N_i
- damping due to loss (mean free path Λ) and disorder (Debye-Waller factor)
- phase shifts

AG M. MÜLLER Physik Biologischer

INSTITUT FÜR EXPERIMENTELL

backscattering amplitude ∫

R (Å)

10

X-ray absorption spectroscopy in materials science

- Photoelectric absorption
- XANES
- EXAFS
- Instrumentation
- Examples

EXAFS / XANES in one shot: DEXAFS

INSTITUT FÜR EXPERIMENTELL UND ANGEWANDTE PHYSI DER CAU ZU KIE

Bent crystal polychromator @ ID24 (ESRF)

A G M . M Ü L L E R PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

(a) Photoelectric absorption

Alternatives to transmission measurements

(b) Fluorescent X-ray emission

fluorescence

(high sensitivity)

(c) Auger electron emission

Auger yield (if fluorescence yield low)

A G M . M Ü L L E R Physik Biologischer Kompositmaterialien

X-ray absorption spectroscopy in materials science

- Photoelectric absorption
- XANES
- EXAFS
- Instrumentation
- Examples

Adsorbate-induced phase change in Rh catalysts

car exhaust catalytic converters: NO converted to N₂

time-resolved **EXAFS** study

Rh metal

Rh nanoparticles rapidly change upon exposure to NO

 Rh_2O_3 oxide

PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

ESRF Highlights 2002

Synchronizing IR spectroscopy and XAFS

again de-NOx Rh catalyst: many different components

sub-second **EXAFS** and IR time resolution

AG M. MÜLLER Physik Biologischer Kompositmaterialien

INSTITUT FÖR EXPERIMENTSLE
UND ANSTWAADDTE PHYSIK
DER CAU ZU KIEL

ESRF Highlights 2006