Small-angle X-ray scattering (SAXS) with synchrotron radiation

Martin Müller

Institut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität zu Kiel

- Introduction to small-angle scattering
- Instrumentation
- Examples of research with SAXS

Small-angle X-ray scattering (SAXS) with synchrotron radiation

- Introduction to small-angle scattering
- Instrumentation
- Examples of research with SAXS

What is small-angle scattering?

elastic scattering in the vicinity of the primary beam (angles $2\theta < 2^{\circ}$) at inhomogeneities (= density fluctuations)

AG M. MÜLLER PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

typical dimensions in the sample:0.5 nm (unit cell, X-ray diffraction)to 1 µm (light scattering!)

What is small-angle scattering?

pores

colloids

polymer morphology

proteins

A G M . M Ü L L E R PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

X-ray scattering (SAXS): electron density neutron scattering (SANS): scattering length

On the importance of contrast ...

When the monster came, Lola, like the peppered moth and the arctic hare, remained motionless and undetected. Harold, of course, was immediately devoured.

Scattering contrast is relative

Babinet's principle

two different structures may give the same scattering:

$$I(Q) \propto (\rho_1 - \rho_2)^2$$

Diffraction and small-angle scattering

cellulose fibre

scattering contrast crystals - matrix

> M. Müller, C. Czihak, M. Burghammer, C. Riekel. J. Appl. Cryst. 33, 817-819 (2000)

Diffraction and small-angle scattering

Diffraction:

 $I(Q) = \left| \sum_{l} f(Q) e^{i \vec{Q} \cdot \vec{R}_{l}} \right|^{2}$ atomic form factor, lattice interference electron distribution \Rightarrow Bragg peaks

small-angle scattering:

ag M. Müller Physik Biologischer Kompositmaterialien

- *form factor* = Fourier transform of particle shape
- structure factor = interparticle interference

Form factor and structure factor

14 13 a Q 8 æ 63 B w 83

form factor: particle shape

structure factor: (mean) particle distance

INSTITUT FÖR EXPERIMENTELLE UND ANDRWANDTE PHYSIK DER CAU ZU KILLE

Form factor and structure factor (non-dilute)

basic principle as in diffraction:

- form factor (as before): single particles, dilute systems
- structure factor: interparticle distances of the order of particle size \Rightarrow interference

Form factor: fit with model function

cellulose microfibrils in flax fibres, long cylinder with radius r (= 15 Å) yields:

$$I(Q) = b + c \cdot \frac{r^4}{Q} \left(\frac{2J_1(Qr)}{Qr}\right)^2$$

Model-free parameter determination

single particle scattering, 2 phases; independent of topology and geometry

invariant

$$I = \frac{1}{V} \int_0^\infty Q^2 I(Q) \, \mathrm{d}Q = 2\pi^2 \phi_1 \phi_2 \left(\Delta \rho\right)^2$$
volume fractions scattering contrast

1000

Guinie

100

10

invariant

Porod

Porod limit

for distances larger than typical distances in the sample and sharp interfaces:

$$\lim_{Q \to \infty} Q^4 I(Q) = 2\pi (\Delta \rho)^2 V \cdot \mathcal{A}$$

specific (inner) surface

Invariant and Porod scattering

- 90 % white
- 10 % black

different scattered intensity, but **same invariant**

AG M. MÜLLER PHYSIK BIOLOGISCHER

Guinier analysis

Guinier (1938): For very small angles scattering function independent of particle shape, only dependent on size:

Why an indirect method?

- non-destructive, no tedious sample preparation (sectioning, staining...)
- averaging of larger areas
 simultaneous information on several length scales in combination with e. g. diffraction
 soft matter: liquids, solutions,

emulsions, biological samples...

A G M . M Ü L L E R PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

H. F. Jakob et al., *Macromolecules* **28**, 8782 (1995)

Small-angle X-ray scattering (SAXS) with synchrotron radiation

- Introduction to small-angle scattering
- Instrumentation
- Examples of research with SAXS

Pinhole camera ID02 at ESRF

AG M. MÜLLER PHYSIK BIOLOGISCHER KOMPOSITMATERIALIEN

"Resolution" in small-angle scattering

SAXS resolution: $2\theta_{\min} \rightarrow d_{\max}$

standard calibration material: rat tail collagen (periodic structure: 67 nm)

M. Müller, M. Burghammer, C. Riekel *Nucl. Instrum. Meth. A* **467-468**, 958-961 (2001)

Combination with microfluorescence

Bonse-Hart camera

apertures / slits replaced by **Si single crystals** (very low angular aceptance):

- + extremely high resolution ($d_{max} = 7 \mu m$)
- low flexibility in flux and resolution

Small-angle X-ray scattering (SAXS) with synchrotron radiation

- Introduction to small-angle scattering
- Instrumentation
- Examples of research with SAXS
 - SAXS with a microbeam: cellulose
 - porosity development in carbon fibres

Microfibril orientation in cellulose fibres

flax fibres

orientation of crystalline microfibrils responsible for mechanical strength and stiffness

measurement with μ SAXS (2 μ m beam size) on **single** fibres

Micro-SAXS on flax cellulose fibres

Porosity development in carbon fibres

D. Lozano Castelló, J. A. Maciá Agulló, D. Cazorla Amorós, A. Linares Solano, M. Müller, M. Burghammer, C. Riekel. *Carbon* **44**, 1121–1129 (2006)

Porosity development in carbon fibres

Micro-SAXS on single starch granules

Microdroplet generator

Time-resolved kinetics (seconds): Hydratisation of starch granules

scanning of a single starch grain during the hydratisation reaction

droplet frequency 1 s⁻¹

Time-resolved kinetics (milliseconds): Self-assembly of ionic surfactants

ID02, ESRF; 20 ms exposure!

Anomalous X-ray scattering

energy-dependent atomic scattering factors (up to 20 % variation) close to X-ray absorption edge:

f(E) = Z + f'(E) + if''(E)atomic number anomalous scattering factor absorption

AG M. MÜLLER PHYSIK BIOLOGISCHER

Iron oxide precipitates in copper single crystal containing 1 at% Fe

2 species of iron oxide precipitates:
(1) platelets with 200 Å Ø on {111}
(2) platelets with 330 Å Ø on {100}

contrast variation by measuring at Cu and Fe edges: (1) Fe_3O_4 (2) γ -Fe₂O₃

O. Paris et al., Acta metall. Mater. **42**, 2019 (1994)

Hierarchical cellulose structure

AG M. MÜLLER Physik Biologischer Kompositmaterialien

INSTITUT FÜR EXPERIMENTELLE UND ANGEWANDTE PHYSIK DER CAU ZU KIEL

Position-resolved X-ray diffraction and small-angle scattering with a microbeam

Simultaneous information on three length scales:

