

ε(ω): polarer Kristall Übersicht

Hunklinger Bild 13.3: Schema der Frequenzabhängigkeit der Dielektrizitätskonstanten eines polaren Kristalls. Größe und Lage der einzelnen Beiträge sind sind festkörperspezifisch.

Loventz-Oszillatormodell (1902) Ë(F) = Eo -iwt lok 2 Summe: ext. Feld und EFestkonper $m\ddot{x} + m\chi\dot{x} + m\omega_0\chi = -eE_{lok}$ $x(t) = -\frac{e}{w} E_{lok}(t) \frac{1}{w^2 - w^2 - iyw}$ Dipolinoment p = - ex Pol'berheit $\alpha = \frac{P}{\varepsilon_{o}} \Rightarrow \alpha = \frac{e^{2}}{\varepsilon_{o}} (\omega^{2} - \omega^{2} i j \omega)$

Re: $\varepsilon_1 = \varepsilon' = 1 + \frac{ne^2}{\varepsilon_0 m} + \frac{\omega_e^2 - \omega'}{(\omega_e - \omega^2)^2 + 2\omega^2}$ $\frac{\varepsilon_2 - \varepsilon''}{\varepsilon_0 - \varepsilon_0} = \frac{Ne^2}{(\omega_e^2 - \omega_e^2)^2 + \chi^2 \omega^2}$ M :

Dielektrische Funktion $\varepsilon', \varepsilon''$

Hunklinger Bild 13.4: Frequenzgang des Realund Imaginärteils der dielektrischen Funktion ε . Bei schwacher Dämpfung liegt die erste Nullstelle von ε' etwa bei der Resonanzfrequenz ω_1 nah am Maximum von ε'' .

ε(ω): polarer Kristall

Ju Allon. viele Resonanzen $E(w) = 1 + \frac{ne^2}{m\epsilon_0} = \frac{1}{w_k} + \frac{1}{w_k}$ fx: azillatorstorke

ε von Ge

Hunklinger Bild 13.5: Real- (blau) und Imaginärteil (schwarz) der dielektrischen Funktion von Ge. Nach H.R. Philipp, H. Ehrenreich, Phys. Rev. **129**, 1550 (1963).

Cohales Feld - Clausing-Mosotti-Bezichung $\vec{p} = \varepsilon_0 \vec{a} \vec{E}$; \vec{a} fir noletui (nur induzierte Dipole) P-Np=nEod Elok Ĩ=ε,χĒ (E=āyš. Feld) y E = Na Elok

Loventznäherung How in Gitter spirt Machbernt "Rest' Rest': Lochoberfläche Maripe Probe an Seves Feld Ēo=-f∑P; f Depolarisation LPlatte Kypel_ Il Platte, Zylinder

Hunklinger Bild 13.1: Querschnitt durch eine dünne dielektrische Platte. Die Elektroden (dunkelblau) tragen Ladungen. Das äußere Feld E_a im Luftspalt wird durch Polarisationsladungen auf der Probe reduziert. Das Feld im Lochinnern ist größer als im umgebenden Medium.

Hunklinger Bild 13.2: Schnitt durch Probe mit Loch im Zentrum. Die Ladung auf der Lochoberfläche stammt von der homogenen Polarisation der Probe. Die Ladung auf dem dunkelblauen Streifen ist d*q*.

Loch: Ann. homogener Polarisierung Méchenladunpsdichte, bezogen auf Richtung von P gr = -P cos 2 Auf Ringtlache sitzt dq = - Pcaso 27 (Lsind) Rdd Betrag des Rinps zum E-Feld: dE = <u>1</u> dq cort dE = <u>4000</u> R² dq cort $\Rightarrow \vec{E}_{L} = \frac{1}{2\epsilon_{0}} \vec{P} \int co^{2} \vec{J} \sin \vec{J} d\vec{J} = \frac{1}{3} \frac{\vec{P}}{\epsilon_{0}}$

Nachbar atome:

Kub. Kvistalle: Dipolmomente heben sich auf Z-Komponente von Ek 32 - r2 = 1 = 2 Pm - rm Mico m - rm Dechbern $kuloisch: E \chi_m = E \chi_m^2 = E z^2 m$ =) Echler oben = 0

Endergebnis: Elokol = Eq+ED + 3 20 P (um formunabh, Ergebnisse zuhaau) Ea L Platte: Erok = Ea - 2 E Il Platte : Elok = Eqt 1 P Kugel : Elok = Ea

 $\vec{P} = n \mathcal{E}_{0k} \vec{E}_{0k}$ $\vec{E}_{10k} = \vec{E} + \frac{1}{3\mathcal{E}} \vec{P}$ E ngt $+\chi =) = \frac{2}{5} \cdot \sqrt{3} \cdot \sqrt{3}$ Clensius-Rosotti

Jonenpolarisation Photon: k=0 > Schwinpunp der t- Untergitter Ui = Anslenkungen der Unterpitter $M_1 \dot{u}_1 + 2Cu_1 - 2Cu_2 = q E_{l_1k}$ Mzuz + 2 Cuz - 2 Cuz = - of Elok Differenz, u=u,-uz, mereduz Masse = $M\ddot{u} + M\dot{w}\dot{v} = q E_{lok} ; w\dot{v}\dot{v} = \mathcal{L}$ erganze Dampfungstern i xw

» pleiche Bewegungsgl, wie aber $u(f) = \frac{\varphi}{M} \frac{1}{w_0^2 - w_0^2} E_{lok}(f)$

Hunklinger Phononendispersion von Bild 6.21: Si. Nach P. Giannozzi et al., Phys. Rev. B 43, 7231 (1991) Bild 6.20: LiF. Nach G. Dolling et al., Phys. Rev. 168, 970 (1968)

 \mathcal{E}_{lok} $\boldsymbol{\mathcal{E}}_{\text{lok}}$ \mathcal{E}_{lok} Elok Р λ \mathcal{E}_{lok} U U c_{lok} Р \mathcal{E}_{lok} Р \mathcal{E}_{lok} Р \mathcal{E}_{lok} **′**lok P **(b**) (\mathbf{a}) Elokes P Kinck, vell Live J ev Hunklinger Bild 13.6: Zur Herleitung des lokalen Feldes bei optischen Gitterschwingungen in Ionenkristallen. Die Knotenebenen (durchgezogene Linien) sind bei langwelligen Phononen viele Atomlagen von einander entfernt. stej a) Bei LO-Phononen verläuft das lokale Feld antiparallel zur Polarisation. b) Bei TO-Phononen verlaufen die beiden Felder parallel zu einander. To hiedriper

D-Phonou: üllű⇒Ěine PLen Knotenebenen ⇒f=1⇒Elok=EorE = - Pe En 36 = -2 te D-Phonon: E. 7 11 Knotenchenen 2 f=0 Elok Et = Pt

resultierende Phononenfrequenzen: $\omega_{tl}^{2} = \omega_{0}^{2} + \frac{2nq^{2}}{3m\epsilon_{0}} + \frac{1}{1-\frac{21}{3}nq}$ $w_{r} > w_{t}$ Etterverzerrung & Polerisation in Jonen Kristallen verknupft def. En = E(w > wy) $\mathcal{E}_{\text{stot}} = \mathcal{E}(\omega \ll \omega_{\text{t}})$ $\frac{\varepsilon(\omega) \varepsilon \varepsilon_{\infty} + \frac{\omega_{\varepsilon}^{2} (\varepsilon_{stat} - \varepsilon_{\infty})}{\omega_{\varepsilon}^{2} - \omega^{2} - i\chi\omega}$ 78)

Kreisfrequenz ω

Hunklinger Bild 13.7: Frequenzgang von ε eines Ionenkristalls aufgrund der optischen Phononen. Real- (blau) und Imaginärteil (schwarz). Nullstellen von ε' liegen bei ω_{I} und in der Nähe von ω_{t} . Im Band von $\omega_{t} \dots \omega_{I}$ werden Wellen an der Oberfläche reflektiert.

Tabelle 13.2: ε_{st} und ε_{oo} und Frequenzen optischer Phononen einiger dielektrischer Kristalle. (Die meisten Daten wurden E. Kartheuser, Polarons in Ionic Crystals and Polar Semiconductors, J.T. Devreese, ed., North Holland, 1972, entnommen.)

	LiCl	NaCl	NaJ	KC1	KBr	CsCl	GaAs	CdS	ZnSe	PbS
$\varepsilon_{ m st}$	11,95	5,9	7,28	4,85	4,52	6,68	12,83	8,42	8,33	190
ε_{∞}	2,79	2,40	3,15	2,22	2,43	2,69	10,90	5,27	5,90	18,50
$\omega_{\mathrm{t}}/10^{13}\mathrm{Hz}$	~ 4,16	3,35	2,34	2,67	2,15	2,02	5,14	4,60	3,90	1,26
$\omega_\ell/10^{13}{ m Hz}$. 8,19	5,10	3,43	4,07	3,18	3,16	5,58	5,80	4,63	4,03

Bild 14.13b: Dielektrische Funktion (Realteil) von SrF₂, gemessen über einen weiten Frequenzbereich Man erkennt die Abnahme der ionischen Polarisierbarkeit bei hohen Frequenzen. (Nach A. von Hippel)

Re(ϵ) von SrF₂

Phonon-Polariton EM-Welle & TO Phonon Koppely =) Anderungdes Phonogen spektrung ETT-Welle mit DE - E(w) = 0 E-Eo exp[-i(wt-qtx)) $\omega^2 = \frac{c^2}{\varepsilon(\omega)} q_t^2$ (72)

houon Polaritonendispersion

Hunklinger Bild 13.8: Dispersionrelation der Polaritonen. Gestrichelt die Dispersionskurven des Lichts. Die Dispersion der optischen Phononen ohne Kopplung verläuft waagrecht. Die blauen Kurven wurden mit Werten für Kochsalz berechnet: $\omega_t = 31$, $\omega_1 = 50$ THz, $\varepsilon_{st} =$ 5,9, $\varepsilon_{oo} = 2,25$. Die verbotene Zone ist hellblau markiert.

Hunklinger Bild 13.9: Polaritonen (dunkelblaue Punkte) in GaP gemessen mit Raman-Streuung. Zusätzlich sind noch Messwerte für LO-Phononen hellblau eingezeichnet. Die Dispersion der ungekoppelten TO-Phononen ist gestrichelt. Nach C.H. Henry, J.J. Hopfield, Phys. Rev. Lett. **15**, 964 (1965)

Polaritonen von GaP