Superconductivity

Normal metal (N):

 $\rho = \rho_0 + \alpha T^5$ at $T \ll \theta_D$

non-magnetic impurities & phonons

Superconductor:

 $\rho = 0$ at $T < T_c$

Heike Kamerlingh Onnes

	IA																	0
1	1		KNOWN SUPERCONDUCTIVE												2			
	н	IIA	ELEMENTS									IVA	YA	YIA	YIIA	не		
2	3 i	4 Ro			= _ ^-	— Г АКЛЯ		- DBE	ככו וב) E			5 - B	6		8	9 E	10 No
	11	12	 GREEN = ONLY UNDER HIGH PRESSURE 							12	14	15	16	17	10			
3	Na	Мg	ШВ	IVB	٧B	VIB	VIIB		— VII –		IB	IIB	AL .	Si	P	S	Ċ	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	к	Ca	Sc	Ti	¥	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37 Dh	38 S =	39	40 - Z	41	42	43 	44	45	46	47	48 Oct	49	50 S -	51 Ch	52 	53	54 Ma
J	RD	or	•	Zr		MO	IC	Ru	нц	Pa	Аġ	Ca.	III	Sn	50	re	<u>'</u>	xe
6	55 CS	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 09	77 Ir	78 PF	79 A II	80 Ha	81 TI	82 Ph	83 Bi	84 Po	85 Af	86 Rn
	07	00	00	104	105	106	107	100	100	110	111							
7	Fr	。。 Ra	∘∍ +AC	Rf	Ha	106	107	108	109	110	111	112						
SUPERCONDUCTORS.							ORG											
	*La	nthan	iide <mark>-</mark>	08 C a	09 D-	DU ⊾∎a∎			다.	04 ~~~		ים ה ו	۲ ۱۰۰۰		U9 T	/0 Vh		
Series Ce			ce	PL 1	Na	HUL	SUL	EU	ua		ן עיי	но	EL			LU		

+ Actinide Series

90

92 93 94 95 96 97 98 99 100 101 102 103 91 Np Pu Am Cm Bk Fm Md Th Pa U Cf Es No Lr

Most metals are superconductors

Some Type 1 Superconductors

Lead (Pb)	7.196 K
Lanthanum (La)	4.88 K
Tantalum (Ta)	4.47 K
Mercury (Hg)	4.15 K
Tin (Sn)	3.72 K
Indium (In)	3.41 K
Thallium (Tl)	2.38 K
Aluminum (Al)	1.175 K
Gallium (Ga)	1.083 K
Molybdenum (Mo)	0.915 K
Zinc (Zn)	0.85 K
Osmium (Os)	0.66 K
Cadmium (Cd)	0.517 K
Ruthenium (Ru)	0.49 K
Titanium (Ti)	0.40 K
Uranium (U)	0.20 K
Hafnium (Hf)	0.128 K
Iridium (Ir)	0.1125 K
Beryllium (Be)	0.023 K
Tungsten (W)	0.0154 K
Lithium (Li)	0.0004 K
Rhodium (Rh)	0.000325 K

T_c(t)

Persistent current

Abb. 1.1 Erzeugung eines Dauerstroms

No decay detected over 2.5 years No dissipation Minimum estimated decay time > age of universe

Meißner-Ochsenfeld-Effect (1933)

Β

B field does not penetrate

= superconductors display

perfect diamagnetism

$$\mathbf{B}_{in} = 0$$

$$\rightarrow \ \mu_0 \ \mathbf{M} + \mathbf{B} = 0$$

$$\rightarrow \ \mathbf{M} = - \ \mathbf{B} / \ \mu_0$$

$$\rightarrow \ \chi = -1$$

Walter Meißner

Perfekter Leiter vs. Supraleiter

Ein würfelförmiger Permanentmagnet schwebt über einer supraleitenden Scheibe aus dem Hochtemperatur-Supraleiter YBa₂Cu₃O₇. Das Schweben ist eine Folge des <u>Meißner-Ochsenfeld-Effekts</u>: Ein Supraleiter verhält sich wie ein idealer Diamagnet und stößt den Permanentmagneten ab. (© 1988 Richard Megna, Fundamental Photographs)

SUPERFLUIDITY

first observed in He⁴ at T < 2.17 K also: He³ at T < 0.003 K

frictionless flow so long as v < $v_c \approx 20$ cm/s persistent circular motion flows up walls

model: superfluid + normal fluid

"Osmotischer Druck" im Zweiflüssigkeitsmodell

Fountain effect

Application: drive ³He circulation in dilution refrigerators

The Critical Field $B_c(T)$

Alloying Pb: Two critical fields - Type 2 SC

 $B_{C1}(T)$ and $B_{C2}(T)$

Some Type 2 Superconductors

Ruthenate	es	Cuprates			
$K_{3}C_{60}$	18 K	MgB ₂	39 K		
Nb ₃ Ge	23.2 K	Nb ₃ Si	19 K		
Nb ₃ Sn	18.1 K	Nb ₃ Al	18 K		
V ₃ Si	17.1 K	Ta₃Pb	17 K		
V ₃ Ga	16.8 K	Nb ₃ Ga	14.5 K		
V ₃ In	13.9 K	NbN	16.1 K		
Nb _{0.6} Ti _{0.4}	9.8 K	Nb	9.25 K		
Тс	7.80 K	V	5.40 K		

dann sinnvoll genutzt werden, wenn ihre kritische Stromdichte erhöht wird und sie als gut getrennte Leiter hergestellt werden. (Magnetfelder von mehr als ca. 20 T können nur in Form von Pulsen erzeugt werden; gestrichelt Kurventeile wurden auf diese Weise

The mixed state: Shubnikov phase

(Schematic. Magnetic field and supercurrents are indicated for two flux vortices)

Eindringen eines Magnetfeldes in Supraleiter

Film, dessen Dicke ungefähr derLondonschen Eindringtiefe λ entspricht.Die Pfeillänge deutet die Magnetfeldstärke an.

Homogene kompakte Probe im Mischzustand, bei dem sich normalleitende und supraleitende Bereiche abwechseln. Die supraleitenden Bereiche sind dünn im Vergleich zu λ . (Die N-Gebiete des Wirbelzustandes sind nicht exakt normal.)

Vortex Lattice Images

1957: Theoretical Prediction of Vortices in Type-II Superconductors

A. A. Abrikosov Soviet Physics JETP 5, 1174 (1957) Nobel prize 2003

First image of Vortex lattice Bitter Decoration, 1967 Pb-4at%In rod, 1.1 K, 195 G U. Essmann, H. Trauble, Phys. Lett. **24A**, 526 (1967) STM, 1989 NbSe₂, 1 T, 1.8 K H. F. Hess et al., Phys. Rev. Lett. **62**, 214 (1989)

Fluxons - 2. Methode

Oszillierender Zylinder mit Spulen an Enden -Induktionsspannung messen

STM

Kouwenhoven et al., TU Delft

Electron Phase Imaging (Tonomura)

Specific heat

(a) Molwärme von Gallium im normalen und im supraleitenden Zustand. Im Normalzustand (der bei einer Feldstärke von 200 G wiederhergestellt wird) liefern Elektronen, Gitter und (bei tiefen Temperaturen) Kernquadrupole Beiträge. In (b) ist der elektronische Beitrag C_{es} zur spezifischen Wärme des supraleitenden Zustandes im logarithmischen Maßstab über T_c/T aufgetragen; die exponentielle Abhängigkeit von 1/T ist offensichtlich. Hier ist: $\gamma = 0.60$ mJ Mol⁻¹·Grad⁻². [Nach N. E. Phillips].

Exponential c(T) – Any ideas?

Isotope effect

Experimentelle Werte von α in $M^{\alpha}T_{c} = \text{const.}$

Substanz	α	Substanz	α
Zn	$0,45 \pm 0,05$	Ru	$0,00 \pm 0,05$
Cd	$0,32 \pm 0,07$	Os	$0, 15 \pm 0, 05$
Sn	$0,47 \pm 0,02$	Мо	0, 33
Hg	$0,50 \pm 0,03$	Nb ₃ Sn	$0,08 \pm 0,02$
Pb	$0,49 \pm 0,02$	Zr	$0,00 \pm 0,05$

- → Phonons are involved
- \rightarrow e-ph interaction matters

Lacking isotope shift:

band structure involved

