
Turbo-51
Documentation

by Igor Funa

edited by
Jürgen Rathlev

Table of contents
 1 Introduction..1
 2 General...2

 2.1 Command line syntax...2
 2.2 Switches and directives...3
 2.3 Memory organization..4
 2.4 System unit...5
 2.5 Files...6
 2.6 Objects..6

 3 Declarations..6
 3.1 Constants...6
 3.2 Types...6
 3.3 Variables..7
 4 Procedures..8
 4.1 System procedures..8
 4.2 System functions...12
 4.3 Assembler procedures...16
 4.4 Inline procedures...16
 4.5 Absolute procedures..17
 4.6 Interrupts...17

 5 Assembler...17
 5.1 Assembler statement...17
 5.2 Compiler internals...18

 5.2.1 General..18
 5.2.2 Reentrant procedures...19
 5.2.3 Methods...20

Appendix A – System unit:...22
Appendix B - simple example of a calculator using files:..25
Appendix C - Example program of how to use objects:...26
Appendix D - Examples of constant definitions:..28
Appendix E - Examples of type declarations:..29
Appendix F - Some examples of variable declarations:...30
Appendix G - Example of assembler procedures:..30
Appendix H - Example of inline procedures:...33
Appendix I - Examples of absolute procedures:...35
Appendix J - Examples of interrupt procedures:..36
Appendix K - Examples of assembler statements:...36

i

ii

 1 Introduction
Turbo51 by Igor Funa is a free Pascal compiler for the 8051 family of microcontrollers. If you are
programming for the 8051 family of microcontrollers and you like Pascal programming language then
you will love Turbo51.

Main features: Used optimizations:
• Win32 console application
• Fast single-pass optimizing compiler
• Borland Turbo Pascal 7 syntax
• Full floating point support
• Mixed Pascal and assembler code
• Full use of register banks
• Advanced multi-pass optimizer
• Smart linker
• Generates compact high quality code
• Output formats: BIN, HEX, OMF
• Assembler source code generation
• Source-level debugging with absolute

OMF-51 extended object file

• Constant folding
• Integer arithmetic optimizations
• Dead code elimination
• Branch elimination
• Code-block reordering
• Loop-invariant code motion
• Loop inversion
• Induction variable elimination
• Instruction selection
• Instruction combining
• Register allocation
• Common subexpression elimination
• Peephole optimization

Turbo51 is released as a freeware. You can use Turbo51 for hobby projects and for serious work. Check
documentation pages and code examples that show the syntax, features and generated files. This should
be enough to start a 8051 project development with Turbo51. And if you are still missing something or
have a problem you can always ask for help.

If you are already familiar with 8051 assembly language programming you can start with Turbo51 as
8051 assembly language compiler and then add some Pascal statements until you become familiar with
Turbo51 and Pascal syntax. A good approach is also to compile some Pascal code and then check
generated code (ASM file). This way you can learn assembly language, get some ideas on how to write
effective code and become familiar with the compiler. Turbo51, like many popular C compilers for 8051,
generates optimized code and supports source-level debugging with OMF object file.

Turbo51 is a command line console application. This means that it has no graphical user interface, menus
or windows. It must be run from a console with parameters: pascal source file to compile and optional
switches. Optionally you can run Turbo51 from some Integrated Development Environment or editor
which supports external applications. It is always a good idea to use the -M option to recompile modified
units to u51 file. The -M switch recompiles only units that need to be recompiled, either their source was
modified or one of their used units was modified in interface section or one of the used include files was
changed. This is the fastest way of compilation. Optionally you can force to recompile all used units with
the -B switch.

Turbo51 uses most of the Borland Turbo Pascal 7 syntax including OOP and some additional directives
and constructs to support specific features of 8051 family (MCS-51).

1

http://turbo51.com/

Reserved words:

AND, ARRAY, ASM, BEGIN, CASE, CONST, CONSTRUCTOR, DESTRUCTOR, DIV, DO, DOWNTO, ELSE,
END, FILE, FOR, FUNCTION, GOTO, IF, IMPLEMENTATION, IN, INHERITED, INTERFACE, LABEL,
MOD, NIL, NOT, OBJECT, OF, OR, PACKED, PROCEDURE, PROGRAM, RECORD, REPEAT, SET, SHL,
SHR, STRING, THEN, TO, TYPE, UNIT, UNTIL, USES, VAR, WHILE, WITH, XOR

Directives:

ABSOLUTE, ASSEMBLER, BITADDRESSABLE, CODE, DATA, EXTERNAL, FORWARD, IDATA, INLINE,
INTERRUPT, PRIVATE, PUBLIC, REENTRANT, USING, USINGANY, VIRTUAL, VOLATILE, XDATA

This manual is derived from the internet site of Turbo-51: http://turbo51.com/documentation

 2 General

 2.1 Command line syntax
Turbo51 [options] filename [options]
Option Description
-A Generate assembler file

-B Build

-C Show error column number

-Dsymbols Define conditionals

-Epath BIN/HEX/U51/OMF output directory

-Fhex address Find source line at address

-G Generate map file

-H Generate Intel HEX file

-Ipath Include file directories

-Jpath Object file directories

-LA Use library Turbo51A.l51 (compiled with $A+, ACALL/AJMP instructions)

-M Make modified units

-MGmemory type Set default memory type for global variables (memory type = D, I or X)

-MLmemory type Set default memory type for local variables (memory type = D, I or X)

-MPmemory type Set default memory type for parameter variables (memory type = D, I or X)

-MTmemory type Set default memory type for temporary variables (memory type = D, I or X)

-O Generate OMF-51 file

-OX Generate extended OMF-51 file (needed for source-level debugging)

-Q Quiet compile

-S Syntax check

-Tpath L51/CFG directory

-Upath Unit file directories

-$directive Command line compiler switch

It is a good idea to use command line option /M to compile used units only when they or files they
depend on were changed. This can speed up the compilation. You can force Turbo51 to rebuild all used
units with command line option /B. Each time the unit is compiled Turbo51 generates a file

2

http://turbo51.com/documentation

'UnitName.u51'. This file is used next time when the main file is compiled. Without using command line
options /M or /B Turbo51 will each time compile all used units without making the compiled unit files
(u51).

Command line compiler switches:

(default values see 2.2)

Compiler switch Description
-$A- Generate absolute instructions (ACALL/AJMP)

-$B- Full boolean evaluation

-$C+ Show source lines in assembler file

-$I+ IDATA variables can start below $80 (as indirectly addressed DATA variables)

-$O+ Optimizations

-$P- Open string parameters

-$R- Reentrant procedures

-$T- Typed pointers

-$U- Unique local variable names

-$V+ Strict var-strings

-$X+ Extended syntax

 2.2 Switches and directives
Compiler switches: {$<letter/switchname><state>[,<letter/switchname><state>] }

(default values are shown below)

Compiler switch Description
$A- Generate absolute instructions (ACALL/AJMP)

$AbsoluteInstructions Off dto.

$B- Full boolean evaluation

$C+ Show source lines in assembler file

$DefaultFile Off Assume CurrentIO system file variable is assigned with the actual IO
procedures

$I+ IDATA variables can start below $80 (as indirectly addressed DATA variables)

$InlineCode On If set to Off compiler generates normal call to inline procedure

$NoReturn Inside assembler procedure prevents generation of RET instruction

$O+ Optimizations

$P- Open string parameters

$R- Reentrant procedures

$T- Typed pointers

$U- Unique local variable names

$V+ Strict var-strings

$X+ Extended syntax

3

Note: there is no space between switch letter and + or - and there is space between long switch name and
On or Off.

Examples: {$DefaultFile On }, {$O+ }, {$C+}

Compiler directives: {$<directive><value> }

Compiler directive Description
$DEFINE Defines symbol

$ELSE Conditional compilation with IFDEF and IFNDEF
$ENDIF End conditional compilation

$IFDEF symbol Conditional compilation if symbol is defined

$IFNDEF symbol Conditional compilation if symbol is not defined

$IFOPT switch(+/-) Conditional compilation if compiler switch is set/not set

$M Memory sizes (only in program), default values:

CODE Start, $0000

CODE Size, $10000

XDATA Start, $0000

XDATA Size, $0000

Heap Size $0000

$IDATA IDATA memory available

$XDATA XDATA memory available (only in unit)

$HEAP Heap available (only in unit)

$MG memory type Set default memory type for global variables (memory type = DATA, IDATA
or XDATA)

$ML memory type Set default memory type for local variables (memory type = DATA, IDATA or
XDATA)

$MP memory type Set default memory type for parameter variables (memory type = DATA,
IDATA or XDATA)

$MT memory type Set default mem. type for temporary variables (memory type = DATA, IDATA
or XDATA)

Examples: {$M $8000,$1000,$9000,$1000,$400}}, {$XDATA}

 2.3 Memory organization
CODE memory
By default the maximum code size is $10000 bytes (64 KB). This can be changed in the main program
with the $M directive.

4

IDATA memory
By default there is no IDATA memory. This can be changed either in the main program or in one of the
directly or indirectly used units with the $IDATA directive. Usually the main program uses a unit which
declares features of the microcontroller including the IDATA memory with the $IDATA directive.

XDATA memory
By default there is no XDATA memory. This can be changed either in the main program with the $M
directive or in one of the used units with the $XDATA directive.

DATA / IDATA Memory organization
If compiler switch $I is set then IDATA variables immediately follow DATA variables. If there is no IDATA

memory or IDATA variables then stack immediately follows DATA variables (Fig. 1).

XDATA Memory organization
Start address and size of XDATA memory and heap size can be set with compiler directive {$MCODE
Size, XDATA Start, XDATA Size, Heap Size} (Fig. 2).

 2.4 System unit
System unit implements Turbo51 runtime library and defines some special function registers (SFR), bits
and interrupt addresses that are present in all microcontrollers based on 8051 core. It is implicitly used by
the compiler. Usually it is loaded from the library (Turbo51.l51) which is a binary concatenation of units
(currently only system unit is included).

There is also the Turbo51A.l51 library which contains the system unit compiled with the $A+ switch and
has no LCALL/LJMP instructions (to use it use the -LA command line option). Warning: until the
compiler will reach some more stable state some declarations in this this unit might change.

5

Fig. 1: Internal memory

Boolean variables

Bit addressable DATA variables

DATA variables

Free DATA memory

IDATA variables

Stack

StackStart

Register bank 2

Register bank 1

Register bank 0

Register bank 3

$00 .. &07

$08 .. &0F

$10 .. &17

$18 .. &1F

$20

$30

$80

Last var. (dummy)

End of int. Mem.

Fig. 2: External memory

Free XDATA stack

XDATA variables

Heap

Free heap

XDATA Stack

XDATA_StackStart

XDATA mem. (first byte)

Last XDATA var. (dummy)

HeapOrg
– first byte of heap

XSP

End of XDATA mem.

HeapPtr

Additional definitions for other microcontrollers of the 8051 family are found in several units with names
like Sys_xxxx.pas (e.g. Sys_80C592.pas, Sys_89S8253.pas).

Find all definitions of the system unit in Appendix A.

 2.5 Files
Turbo51 supports files - a general framework for IO handling. However, you have to provide the low
level IO procedures. Files can be untyped, typed (File of SomeType) and of type Text (ASCII text
terminated with line feed (#10) character). The following procedures support files:

• Assign
• Read
• ReadLn
• BlockRead

• Write
• WriteLn
• BlockWrite

See Appendix B for a simple example of a calculator using files.

 2.6 Objects
Objects are data structures that merge pascal records and procedures called methods, i.e. data and code
together. In order to use objects in Turbo51 you need XDATA memory. The syntax is equivalent to that in
Borland Turbo Pascal 7. Turbo51 supports:

• Inheritance
• Static and dynamic objects
• Private fields
• Constructors and destructors
• Static, virtual and dynamic methods

See Appendix C for an example.

 3 Declarations

 3.1 Constants
Turbo51 constants can be of any ordinal type. Typed constants are stored in CODE memory (in little
endian format) and can not be modified. Boolean typed constants are not possible because boolean data
can only be stored as bits in bit-addressable DATA memory (which is available in all 8051 derivatives), but
you can use ByteBool or similar typed constants.

Find some examples in Appendix D.

 3.2 Types
Turbo51 provides the following system types: Byte (unsigned 8-bit), Word (unsigned 16-bit), ShortInt
(signed 8-bit), Integer (signed 16-bit), LongInt (signed 32-bit), Real (uses 4 bytes), String, Boolean,
ByteBool, WordBool, LongBool and Char. You can also construct any other type according to Pascal
syntax. In Turbo51 there are three types of pointer: ShortPtr (points to IDATA), Pointer (points to XDATA)
and CodePointer (points to CODE). Similarly there are ShortPChar, PChar and CodePChar. Pointers to
ordinal types can have memory type directive DATA, IDATA or XDATA which overrides default memory
type for variables and sets memory type to which this pointer will point to.

Find some examples in Appendix E.

6

 3.3 Variables
Turbo51 variables can have memory type directives DATA, IDATA or XDATA which overrides default
memory type for variables (IDATA memory with addresses starting from $80 is not available on all 8051
derivatives, some 8051 derivatives have also internal XDATA memory). Boolean variables are stored as
bits in bit-addressable DATA memory which is available in all 8051 derivatives. Volatile directive declares
volatile variable - variable which is modified by some interrupt or hardware. Absolute directive declares
variable on top of another variable (AbsVar absolute RecordVariable.Field is also possible) or at some
absolute address. Boolean variables can not be passed by reference (8051 has no instruction to reference
bit variable by address) and can not be passed as parameter in re-entrant procedures. In such cases you
can use system type ByteBool which occupies 1 byte. BitAddressable directive declares variable which
will be placed in DATA address space from $20 to $2F - you can access individual bits of such (8-bit) bit-
addressable variable with BitAddressableVar.n where n is 0 to 7. Data is always stored in little endian
format.

Find some examples in Appendix F.

You can also declare variables in units with directive absolute Forward which means some (from the
unit) unknown memory address. Example:

 Unit I2C;

 Interface

 Var Ack: Boolean;
 SDA: Boolean absolute Forward;
 SCL: Boolean absolute Forward;

A main program which uses this unit declares these absolute Forward variables at correct address.

 Program Test;

 Uses I2C;

 Var I2C.SCL: Boolean absolute P3.4;
 I2C.SDA: Boolean absolute P3.5;

7

 4 Procedures

 4.1 System procedures
Assign
Procedure Assign (Var F: File; ReadFunction: Function; WriteProc: Procedure);

Procedure Assign assigns read function and write procedure to file variable F. Either ReadFunction or
WriteProc can be omitted. Read function must be a non-reentrant function with no parameters which
returns Char or Byte result (result must be returned in register A - default for Turbo51 pascal functions)
and MUST preserve registers R2, R3, R4, R5, R8, R9. WriteProc must be a non-reentrant procedure with
no parameters and MUST preserve registers R2, R3, R6, R7. Character to write is passed to procedure in
register A. If the WriteProc is written in pascal then it must first save character to some local storage
(short asm statement at the beginning of procedure).

BlockRead
Procedure BlockRead (Var F: File; Var Buffer; Count: Word);

Procedure BlockRead reads Count bytes from file F to Buffer. Files are read by the ReadFunction that is
assigned to file F.

BlockWrite
Procedure BlockWrite (Var F: File; Var Buffer; Count: Word);

Procedure BlockWrite writes Count bytes from Buffer to file F. Bytes are written by the WriteProcedure
that is assigned to file F.

Break
Procedure Break;
Break jumps to the statement following the end of the current loop statement. The code between the
Break call and the end of the loop statement is skipped. This can be used with For, Repeat and While
statements.

Change
Procedure Change (S: TSetOfElement; Element: TOrdinalType);

Change changes inclusion of Element in the set S (If element is included in the set the procedure performs
Exclude and Include otherwise).

Continue
Procedure Continue;

Continue jumps to the end of the current loop statement. The code between the Continue call and the end
of the loop statement is skipped. This can be used with For, Repeat and While statements.

Dec
Procedure Dec (Var X: OrdinalType);
Procedure Dec (Var X: OrdinalType; Decrement: Longint);

Dec decrements the value of X with Decrement. If Decrement isn't specified, then 1 is taken as a default.

8

Delete
Procedure Delete (Var S: String; Index: Byte; Count: Byte);

Delete deletes Count characters from string S, starting at position Index. All characters after the deleted
characters are shifted Count positions to the left, and the length of the string is adjusted.

Dispose
Procedure Dispose (P: Pointer);
Procedure Dispose (P: TypedPointer; Destruct: Procedure);

The first form Dispose releases the memory allocated with a call to New. The released memory is returned
to the heap. The second form of Dispose accepts as a first parameter a pointer to an object type, and as a
second parameter the name of a destructor of this object. The destructor will be called, and the memory
allocated for the object will be freed.

Exclude
Procedure Exclude (S: TSetOfElement; Element: TOrdinalType);

Exclude excludes Element from the set S.

Exit
Procedure Exit;

Exit exits the current procedure or function and returns control to the calling routine.

ExitBlock
Procedure ExitBlock;

ExitBlock exits the current begin-end block and returns control to the statement after this begin-end block.

Fail
Procedure Fail;

Fail exits the constructor with nil value.

FillChar
Procedure Fillchar (Var Mem; Count: Word; Value: Char);

Fillchar fills the memory starting at Mem with Count characters with value equal to Value.

FreeMem
Procedure FreeMem (Var Ptr: Pointer; Count: Word);

FreeMem releases the memory occupied by the pointer Ptr, of size Count (in bytes), and returns it to the
heap. Ptr should point to the memory allocated to a dynamic variable with procedure GetMem.

GetMem
Procedure GetMem (Var Ptr: Pointer; Size: Word);

GetMem reserves Size bytes memory on the heap, and returns a pointer to this memory in Ptr. If no more
memory is available, nil is returned.

9

Halt
Procedure Halt;

Halt generates code for endless loop (i.e. jump to itself).

Inc
Procedure Inc (Var X: OrdinalType);
Procedure Inc (Var X: OrdinalType; Increment: Longint);

Inc increments the value of X with Increment. If Increment isn't specified, then 1 is taken as a default.

Include
Procedure Include (S: TSetOfElement; Element: TOrdinalType);

Include includes Element to the set S.

Insert
Procedure Insert (Const Source: String; Var DestStr: String; Index: Byte);

Insert inserts string Source in string DestStr, at position Index, shifting all characters after Index to the
right. The resulting string is truncated at 255 characters, if needed.

Mark
Procedure Mark (Var Ptr: Pointer);

Mark copies the current heap-pointer HeapPtr to Ptr.

Move
Procedure Move (Var Source, Dest; Count: Word);

Move moves Count bytes from Source to Dest.

New
Procedure New (Var Ptr: Pointer);
Procedure New (Var Ptr: PObject; Constructor);

New allocates a new instance of the type pointed to by Ptr, and puts the address in Ptr. If Ptr is a pointer
to an object, then it is possible to specify the name of the constructor with which the instance will be
created.

Randomize
Procedure Randomize;

Randomize initializes the random number generator of Turbo51, by giving a value to RandSeed,
calculated with the system clock.

Read
Procedure Read ([Var F: File,] V1 [, V2, ... , Vn]);

Read reads one or more values from a file F, and stores the result in V1, V2, etc. If no file F is specified,
then standard input is read. If F is a typed file, then each of the variables must be of the type specified in
the declaration of F.

10

Readln
Procedure Readln ([Var F: File,] V1 [, V2, ... , Vn]);

Readln reads one or more values from a file F, and stores the result in V1, V2, etc. After that it goes to the
next line in the file (defined by the LineFeed (#10) character). If no file F is specified, then standard
input is read. If F is a typed file, then each of the variables must be of the type specified in the declaration
of F. Untyped files are not allowed as an argument.

Release
Procedure Release (Ptr: Pointer);

Release sets the top of the heap to the location pointed to by Ptr. All memory at a location higher than Ptr
is marked empty.

Str
Procedure Str (Var X[: NumPlaces[:Decimals]]; Var Str: String);

Str returns a string which represents the value of X. X can be any numerical type. The optional
NumPlaces and Decimals specifiers control the formatting of the string.

Val
Procedure Val (Const Str: String; Var V; Var ErrorCode: Integer);

Val converts the value represented in the string Str to a numerical value, and stores this value in the
variable V, which can be of type Longint or Real. If the conversion isn't successful, then the parameter
ErrorCode contains the index of the character in Str which prevented the conversion. The string Str isn't
allowed to contain spaces.

Write
Procedure Write ([Var F: File,] V1 [, V2, ... , Vn]);

Write writes the contents of the variables V1, V2 etc. to the file F. F can be a typed file, or a Text file. If F
is a typed file, then the variables V1, V2 etc. must be of the same type as the type in the declaration of F.
Untyped files are not allowed. If the parameter F is omitted, standard output is assumed (system file
variable Output which is alias of text file SystemIO). If F is of type Text, then the necessary conversions
are done such that the output of the variables is in character format. This conversion is done for all
numerical types. Strings are printed exactly as they are in memory, as well as PChar types. The format of
the numerical conversions can be influenced through the following modifiers: OutputVariable:
NumChars [: Decimals]. This will print the value of OutputVariable with a minimum of NumChars
characters, from which Decimals are reserved for the decimals. If the number cannot be represented with
NumChars characters, NumChars will be increased, until the representation fits. If the representation
requires less than NumChars characters then the output is filled up with spaces, to the left of the
generated string, thus resulting in a right-aligned representation. If no formatting is specified, then the
number is written using its natural length, with nothing in front of it if it's positive, and a minus sign if it's
negative. Real numbers are, by default, written in scientific notation.

Writeln
Procedure Writeln ([Var F: File,] V1 [, V2, ... , Vn]);

Writeln does the same as Write for text files, and writes a Carriage Return - LineFeed character pair
(#13#10) after that. If the parameter F is omitted, standard output is assumed (system text variable

11

Output which is alias of text file SystemIO). If no variables are specified, a Carriage Return - LineFeed
character pair is written.

 4.2 System functions
Abs
Function Abs (X: Integer): Integer;
Function Abs (X: Real): Real;

Abs returns the absolute value of a variable X. The result of the function has the same type as its
argument, which can be Integer or Real.

Addr
Function Addr (X: T_DATA_Variable): ShortPtr;
Function Addr (X: T_XDATA_Variable): Pointer;
Function Addr (X: TProcedure): CodePointer;

Addr returns a pointer to its argument, which can be any type including procedure or function. If
argument is in DATA segment the result is of type ShortPtr, if argument is in XDATA segment the result is
of type Pointer and if argument is in CODE segment (typed constant, function, procedure, static method)
the result is of type CodePointer. The returned pointer isn't typed. Similar result can be obtained by the @
operator which returns a typed pointer.

ArcTan
Function Arctan (X: Real): Real;

Arctan returns the Arctangent of X. The resulting angle is in radians.

Assigned
Function Assigned (P: Pointer): Boolean;

Assigned returns True if P is non-nil and returns False otherwise. P can be any pointer or procedural
variable.

Bcd
Function Bcd (D: Byte): Byte;

Bcd returns binary coded decimal representation of D.

Chr
Function Chr (X: Byte): Char;

Chr returns the character which has ASCII value X.

Concat
Function Concat (S1, S2 [,S3, ... ,Sn]): String;

Concat concatenates the strings S1, S2 etc. to one long string. The resulting string is truncated at a length
of 255 bytes. The same operation can be performed with the + operation. Function Concat needs XDATA
memory.

12

Copy
Function Copy (Const S: String; Index: Byte; Count: Byte): String;

Copy returns a string which is a copy if the Count characters in S, starting at position Index. If Count is
larger than the length of the string S, the result is truncated. If Index is larger than the length of the string
S, then an empty string is returned. Function Copy needs XDATA memory.

Cos
Function Cos (X: Real): Real;

Cos returns the cosine of X, where X is an angle in radians.

Exp
Function Exp (Var X: Real): Real;

Exp returns the exponent of X, i.e. the number e to the power X.

Frac
Function Frac (X: Real): Real;

Frac returns the fractional part of a floating point number in X.

Hi
Function Hi (X: Word): Byte;
Function Hi (X: Pointer): Byte;

Hi returns the high byte of word or pointer in X.

High
Function High (TOrdinalType): TOrdinalTypeElement;
Function High (X: TOrdinalType): TOrdinalTypeElement;
Function High (X: TArray): TArrayIndex;
Function High (X: TOpenArray): Integer;

The return value of High depends on it's argument:
1. If the argument is an ordinal type, High returns the highest value in the range of the given ordinal

type.
2. If the argument is an array type or an array type variable then High returns the highest possible value

of it's index.
3. If the argument is an open array identifier in a function or procedure, then High returns the highest

index of the array, as if the array has a zero-based index. The return type is always the same type as
the type of the argument (or type of index in arrays).

Int
Function Int (X: Real): Real;

Int returns the integer part of a floating point number in X. The result is Real, i.e. a floating point number.

Length
Function Length (S: String): Byte;

Length returns the length of the string S. If the strings S is empty, 0 is returned. Note: The length of the
string S is stored in S [0].

13

Ln
Function Ln (X: Real): Real;

Ln returns the natural logarithm of the Real parameter X. X must be positive.

Lo
Function Lo (X: Word): Byte;
Function Lo (X: Pointer): Byte;

Lo returns the low byte of word or pointer in X.

Low
Function Low (TOrdinalType): TOrdinalTypeElement;
Function Low (X: TOrdinalType): TOrdinalTypeElement;
Function Low (X: TArray): TArrayIndex;
Function Low (X: TOpenArray): Integer;

The return value of Low depends on it's argument:
1. If the argument is an ordinal type, Low returns the lowest value in the range of the given ordinal

type.
2. If the argument is an array type or an array type variable then Low returns the lowest possible value

of it's index.
3. If the argument is an open array identifier in a function or procedure, then Low returns the lowest

index of the array which is 0. The return type is always the same type as the type of the argument (or
type of index in arrays).

MaxAvail
Function MaxAvail: Word;

MaxAvail returns the size in bytes of the biggest free memory block in the heap.

MemAvail
Function MemAvail: Word;

MemAvail returns the size in bytes of all free memory in the heap.

New
Function New (PType);
Function New (PObjectType; Constructor);

New returns address of allocated memory for a new instance of the type PType. If PType is a pointer to an
object type, then it is possible to specify the name of the constructor with which the instance will be
created.

Odd
Function Odd (X: Longint): Boolean;

Odd returns True if X is odd, or False otherwise.

Ofs
Function Ofs (TRecord.Field): Longint;

Ofs returns offset of Field in record type TRecord.

14

Ord
Function Ord (X: TOrdinalType): Longint;

Ord returns the ordinal value of a ordinal-type variable X.

Pi
Function Pi: Real;

Pi returns the value of π (3.1415926535897932385).

Pos
Function Pos (Const Substr, Str: String): Byte;

Pos returns the index of Substr in Str, if Str contains Substr. In case Substr isn't found, 0 is returned. The
search is case-sensitive.

Pred
Function Pred (X: TOrdinalType): TOrdinalType;

Pred returns the element that precedes the element that was passed to it.

Random
Function Random (L: Longint): Longint;
Function Random: Real;

Random returns a random number larger or equal to 0 and strictly less than L. If the argument L is
omitted, a Real number between 0 and 1 is returned. (0 included, 1 excluded).

Round
Function Round (X: Real): Longint;

Round rounds X to the closest integer, which may be bigger or smaller than X.

Sin
Function Sin (X: Real): Real;

Sin returns the sine of its argument X, where X is an angle in radians.

SizeOf
Function SizeOf (TAnyType): Longint;
Function SizeOf (X: TAnyType): Longint;
Function SizeOf (TRecord.Field): Longint;

SizeOf returns the size in bytes of any variable, type or record field.

Sqr
Function Sqr (X: Real): Real;

Sqr returns the square of its argument X.

Sqrt
Function Sqrt (X: Real): Real;

Sqrt returns the square root of its argument X, which must be positive.

15

Succ
Function Succ (X: TOrdinalType): TOrdinalType;

Succ returns the element that succeeds the element that was passed to it.

Swap
Function Swap (X: Word): Word;

Swap swaps the high and low order bytes of X.

SwapWord
Function SwapWord (X: LongInt): LongInt;

SwapWord swaps the high and low order words of X.

Trunc
Function Trunc (X: Real): Longint;

Trunc returns the integer part of X, which is always smaller than (or equal to) X in absolute value.

TypeOf
Function TypeOf (TObjectType): Pointer;

TypeOf returns the address of the VMT of the TObjectType.

UpCase
Function Upcase (C: Char): Char;

UpCase returns the uppercase version of its argument C.

 4.3 Assembler procedures
In Appendix G you can see some examples of procedures written entirely in 8051 assembly language. At
the end of each procedure Turbo51 adds only RET instruction (or RETI in interrupt procedure). Turbo51
automatically removes RET instruction at the end of procedure if it finds out that it will not be reached. If
for some reason RET instruction is not removed and you don't want it you can use the $NoReturn
compiler directive inside assembler procedure to prevent generating RET instruction. You can easily pass
parameters by value (Turbo51 automatically creates static variables for value storage), by reference
(Turbo51 automatically creates static variables for pointer storage) or you can pass values in registers.
Procedure's parameters can be accessed as local variables with Procedure.Parameter. See also assembler
statement (5.1).

 4.4 Inline procedures
Procedures (and functions) that are declared with the Inline directive are copied to the places where they
are called. This has the effect that there is no actual procedure (or function) call, the code of the procedure
is just copied to where the procedure is needed, this results in faster execution speed if the procedure or
function is used a lot but but usually means also larger code size. You can override this behaviour with the
$InlineCode directive. When set to Off (default is On) the compiler will generate normal calls to inline
procedures.

Find an example in Appendix H.

16

 4.5 Absolute procedures
You can force placing a procedure at absolute address with the absolute directive. This way you can also
reserve some bytes at fixed addresses in code segment. There is no need to call procedures at absolute
addresses, linker will place them where they should be.

See some examples in Appendix I.

 4.6 Interrupts
Interrupts are procedures declared with the Interrupt directive and interrupt address. In this example
Timer0 is a constant defined in the System unit. For any procedure we can optionally define register bank
to be used in this procedure by Using and number of bank (0 to 3) or we can define bank independent
procedure with UsingAny. Such procedure can be called from any interrupt.

Warning: Make sure that all variables that might be changed in the interrupt procedure are marked with
the Volatile directive. This will tell the compiler that their value can be modified outside of current
program flow so many optimizations on these variables will not be performed since their value is not
known. Do not place in an interrupt routine time consuming operations like floating point operations, file
I/O, string manipulations, large memory moves, etc.

Find an example of interrupt declaration in Appendix J.

 5 Assembler

 5.1 Assembler statement
A Turbo51 assembler statement is very similar to 8051 assembler. You can use all instructions from the
8051 (MCS-51) instruction set. Labels starting with “@” don't have to be declared. You don't have to
preserve any register and don't assume anything about register content before assembler statement. Byte
variables AR0 to AR7 are direct locations for registers R0 to R7 (addresses from $00 to $1F, depending on
the active register bank). To access an identifier which name is also name of a register place “&” before
identifier name (example: use &R0 to access identifier R0 and not register R0). Procedure's parameters
can be accessed as local variables with Procedure.Parameter.

See also assembler procedures (4.3). Find an example in Appendix K.

Additional notes:
DB Use DB to define byte.

DW Use DW to define word.

DD Use DD to define double word (LongInt).

OR Use OR for logical or operation.

AND Use AND for logical and operation.

XOR Use XOR for logical xor operation.

NOT Use NOT for logical not operation.

MOD Use MOD for integer division modulus.

SHR Use SHR for right shift.

SHL Use SHL for left shift.

LOW (Word) Use LOW to access low byte of word.

17

HIGH (Word) Use HIGH to access high byte of word.

SWAP (Word) Use SWAP to swap low and high byte of word.

Arithmetic functions Use +, -, *, / for integer arithmetic operations.

Procedure.Parameter Use Procedure.Parameter to access called procedure's parameters.

RecordType.Field Use RecordType.Field to get the offset of field in record.

VMTADDRESS TObjectType Use VMTADDRESS to get the address of Virtual
Method Table of TObjectType.

VMTOFFSET TObjectType.VirtualMethod Use VMTOFFSET to get the offset of
TObjectType.VirtualMethod in VMT.

VMTADDRESSOFFSET TObjectType Use VMTADDRESSOFFSET to get the offset in object
of the address of Virtual Method Table.

DMTADDRESS TObjectType Use DMTADDRESS to get the address of Dynamic
Method Table of TObjectType.

DMTINDEX TObjectType.DynamicMethod Use DMTINDEX to get the index of
TObjectType.DynamicMethod.

For reentrant procedures and functions the following symbols are defined:

@LOCALS returns offset of local variables on XDATA stack.

@PARAMS returns offset of parameters on XDATA stack.

@RESULT returns offset of result variable on XDATA stack.

 5.2 Compiler internals
If you are interested in Turbo Pascal internals and would like to see the source code of some popular
commercial Pascal compiler then check Turbo Pascal Compiler Written in Turbo Pascal.

 5.2.1 General
Data storage
All variables and typed constants are stored in little endian format.

Boolean variables
Boolean variables are stored as bits in bit-addressable DATA memory which is available in all 8051
derivatives. Boolean variables can not be passed by reference (8051 has no instruction to reference bit
variable by address) and can not be passed as parameter in re-entrant procedures. In such cases you can
use system type ByteBool which occupies 1 byte.

Global variables
Global variables are placed in default memory type for global variables which can be set with compiler
directive $MG MemoryType (DATA, IDATA or XDATA) and defaults to DATA. This memory type can be
overridden for each variable declaration.

Local variables
All local variables in normal (non-reentrant) procedures and functions are static. They are placed like
global variables but are accessible only in local scope. Default memory type for local variables can be set

18

http://turbo51.com/compiler-design/tpc16-turbo-pascal-compiler-written-in-turbo-pascal

with compiler directive $ML MemoryType (DATA, IDATA or XDATA) and defaults to DATA. This
memory type can be overridden for each variable declaration.

Parameters
All parameters in normal (non-reentrant) procedures and functions are stored as local variables and are
static. Default memory type for parameters can be set with compiler directive $MG MemoryType (DATA,
IDATA or XDATA) and defaults to DATA. This memory type can be overridden for each parameter
declaration.

Register usage
Turbo51 internally uses two register sets: R5R4R3R2 and R9R8R7R6. R8 and R9 are ordinary DATA
variables declared in System unit. 8-bit data is stored in R2 (R6), 16-bit data is stored in R3R2 (R7R6) and
32-bit data uses whole set.

XDATA Stack
When XDATA memory is present Turbo51 creates there a stack. XSP (Pointer declared in System unit)
points to to the top of stack.

Calls to normal (non-reentrant) procedures and functions
For normal, non-reentrant procedures all parameters are stored as local variables. Caller passes data by
storing it to local memory for parameters and calls procedure. Functions return simple result in either ACC
or first register set (R5R4R3R2). String functions return pointer to result string in R0 (if it is in DATA or
IDATA memory) or in DPTR otherwise (result is in CODE or XDATA memory). Currently this is the only
supported calling convention.

In most cases there is no need for reentrant procedures. This avoids using XDATA stack and greatly
simplifies generated code. Try to avoid reentrant procedures unless they are really needed.

 5.2.2 Reentrant procedures
For reentrant procedures all parameters are pushed on XDATA stack. Functions return simple result in first
register set (R5R4R3R2). For functions which return a String result call must reserve space in XDATA
memory and push its address (see Fig. 3). Before a call to the reentrant procedure is made the following is
pushed on the XDATA stack:

• Address for String result (for functions which return String)
• All parameters in order in which they were declared
• XBP of calling local procedure

Called procedure on entry:
• pushes XBP
• sets XBP to point to the top of pushed parameters
• reserves space for local variables (increases XSP accordingly)

On exit called procedure pops saved XBP and removes all pushed parameters from XDATA stack. XDATA
stack during reentrant procedure call looks like Fig. 3.

19

 5.2.3 Methods
Methods are always reentrant. Before a call to the method is made the following is pushed on the XDATA
stack:

• Address for String result (for functions which return String)
• All parameters in order in which they were declared

On call to static method the following parameters must be in registers:
• R3R2: Self address

On call to virtual method the following parameters must be in registers:
• DPTR: Self address (will be placed in R3R2 by system routine for virtual method call)
• R2 (or R3R2): Offset of VMT address
• R0 (or R1R0): Offset of method address
• R5R4: VMT parameter

On call to dynamic method the following parameters must be in registers:
• DPTR: Self address (will be placed in R3R2 by system routine for dynamic method call)
• R2 (R3R2): Offset of DMT address
• R1: Dynamic method index
• R5R4: VMT parameter

On call to constructor method the following parameters must be in registers:
• R3R2: Self address (If nil, constructor call is via New)
• R5R4: VMT parameter (address of VMT - normal call, $0000 means static call -no initialization

of VMT address in Self)
• Returns Self (address of allocated object) in R3R2

20

Fig. 3: Reentrant procedures - Use of
external memory

XDATA Stack
high memory

Local variables and
temporary storage

Result variable
(for functions which return simple type)

Saved XBP

Outer procedure's XBP
(if there is outer procedure)

Pushed parameters

XDATA Stack
low memory

Pushed address for String result
(for functions which return string)

XSP

XBP

XBP-2

XBP-4

Fig. 4: Methods -Use of external
memory

VMT parameters

Self address

XDATA Stack
high memory

Local variables and
temporary storage

Result variable
(for functions which return simple type)

Saved XBP

Outer procedure's XBP
(if there is outer procedure)

Pushed parameters

XDATA Stack
low memory

Pushed address for String result
(for functions which return string)

XSP

XBP

XBP-2

XBP-4

XBP+2

XBP+4

On call to destructor method the following parameters must be in registers:
• R3R2: Self address
• R4: VMT parameter ($00: normal destructor call, $01: call via Dispose)

Called method on entry:
• pushes XBP
• sets XBP to point to the top of pushed parameters
• pushes Self parameter which was passed in R3R2

• pushes VMT parameter which was passed in R5R4

• reserves space for local variables (increases XSP accordingly)

On exit called method pops saved XBP and removes all pushed parameters from XDATA stack. XDATA
stack during called method looks like Fig 4.

21

Appendix A – System unit:
Unit System;

Interface

Const
 BELL = $07;
 BS = $08;
 TAB = $09;
 LF = $0A;
 CR = $0D;
 EOF = $1A;
 ESC = $1B;
 DEL = $7F;

{ Interrupt addresses valid for all 8051 microcontrollers }

 External0 = $0003;
 Timer0 = $000B;
 External1 = $0013;
 Timer1 = $001B;
 Serial = $0023;

Type
 TDeviceWriteProcedure = Procedure;
 TDeviceReadFunction = Function: Char;
 TFileRecord = Record
 WriteProcedure: TDeviceWriteProcedure;
 ReadFunction: TDeviceReadFunction;
 end;
Var
{ Direct access to 8051 registers R0 to R7, exact address is bank dependent and will
be set by the linker }

 AR0: Byte absolute 0;
 AR1: Byte absolute 1;
 AR2: Byte absolute 2;
 AR3: Byte absolute 3;
 AR4: Byte absolute 4;
 AR5: Byte absolute 5;
 AR6: Byte absolute 6;
 AR7: Byte absolute 7;

{ SFRs present in all 8051 microcontrollers }

 P0: Byte absolute $80; Volatile;
 SP: Byte absolute $81; Volatile;
 DPL: Byte absolute $82;
 DPH: Byte absolute $83;
 PCON: Byte absolute $87; Volatile;
 TCON: Byte absolute $88; Volatile;
 TMOD: Byte absolute $89; Volatile;
 TL0: Byte absolute $8A; Volatile;
 TL1: Byte absolute $8B; Volatile;
 TH0: Byte absolute $8C; Volatile;
 TH1: Byte absolute $8D; Volatile;

22

 P1: Byte absolute $90; Volatile;
 SCON: Byte absolute $98; Volatile;
 SBUF: Byte absolute $99; Volatile;
 P2: Byte absolute $A0; Volatile;
 IE: Byte absolute $A8; Volatile;
 P3: Byte absolute $B0; Volatile;
 IP: Byte absolute $B8; Volatile;
 PSW: Byte absolute $D0; Volatile;
 ACC: Byte absolute $E0;
 B: Byte absolute $F0;

 DPTR: Pointer absolute $82;

{ TCON }
 TF1: Boolean absolute TCON.7;
 TR1: Boolean absolute TCON.6;
 TF0: Boolean absolute TCON.5;
 TR0: Boolean absolute TCON.4;
 IE1: Boolean absolute TCON.3;
 IT1: Boolean absolute TCON.2;
 IE0: Boolean absolute TCON.1;
 IT0: Boolean absolute TCON.0;

{ SCON }
 SM0: Boolean absolute SCON.7;
 SM1: Boolean absolute SCON.6;
 SM2: Boolean absolute SCON.5;
 REN: Boolean absolute SCON.4;
 TB8: Boolean absolute SCON.3;
 RB8: Boolean absolute SCON.2;
 TI: Boolean absolute SCON.1;
 RI: Boolean absolute SCON.0;

{ IE }
 EA: Boolean absolute IE.7;
 ES: Boolean absolute IE.4;
 ET1: Boolean absolute IE.3;
 EX1: Boolean absolute IE.2;
 ET0: Boolean absolute IE.1;
 EX0: Boolean absolute IE.0;

{ P3 }
 RD: Boolean absolute P3.7;
 WR: Boolean absolute P3.6;
 T1: Boolean absolute P3.5;
 T0: Boolean absolute P3.4;
 INT1: Boolean absolute P3.3;
 INT0: Boolean absolute P3.2;
 TXD: Boolean absolute P3.1;
 RXD: Boolean absolute P3.0;

{ IP}
 PS: Boolean absolute IP.4;
 PT1: Boolean absolute IP.3;
 PX1: Boolean absolute IP.2;
 PT0: Boolean absolute IP.1;
 PX0: Boolean absolute IP.0;

23

{ PSW }
 CY: Boolean absolute PSW.7;
 AC: Boolean absolute PSW.6;
 F0: Boolean absolute PSW.5;
 RS1: Boolean absolute PSW.4;
 RS0: Boolean absolute PSW.3;
 OV: Boolean absolute PSW.2;
 P: Boolean absolute PSW.0;

 MemCODE: Array [$0000..$FFFF] of Byte CODE absolute $0000;
 MemDATA: Array [$00.. $FF] of Byte DATA absolute $00; { Present in all 8051
microcontrollers, addresses from $80 and above access SFRs }
 MemIDATA: Array [$00.. $FF] of Byte IDATA absolute $00; { IDATA memory from
$80..$FF is not present in all 8051 microcontrollers }
 MemXDATA: Array [$0000..$FFFF] of Byte XDATA absolute $0000; { Not present in all
8051 microcontrollers, usually added externally }

Var
 XDATA_StackStart: Word XDATA; { Used for XSP and XBP initialization }
 StackStart: Byte DATA; { Used for SP initialization }
 R8, R9: Byte DATA; { Used for LongInt set 1 }
 TempRegister: Byte DATA;

 { Used for recursion stack and local variables in XDATA }

 XSP, XBP: Pointer DATA;

 { Used for heap management }

 HeapOrg,
 HeapPtr,
 HeapEnd: Pointer DATA;
 FreeList: Pointer XDATA;
 HeapError: Procedure DATA;

 RandomSeed: LongInt DATA; { Used for random numbers }

 { Used for file I/O }

 CurrentIO: File DATA;
 SystemIO: Text DATA; { Used for Read/Readln/Write/Writeln }
 Input: Text absolute SystemIO;
 Output: Text absolute SystemIO;

 { Used for sysReadCharFromCurrentDevice }

 LastCharacterBuffer: Char;
 LastCharacterBufferValid: Boolean;

 { Used for some arithmetic functions }

 Overflow: Boolean;
 ResultSign: Boolean;
 TempBool0: Boolean;
 TempBool1: Boolean;
 TempWord: Word DATA;
 TempByte0: Byte DATA;
 TempByte1: Byte DATA;

24

 TempByte2: Byte DATA;
 TempByte3: Byte DATA;
 TempByte4: Byte DATA;
 TempByte5: Byte DATA;
 TempByte6: Byte DATA;
 TempByte7: Byte DATA;
 TempByte8: Byte DATA;
 TempByte9: Byte DATA;

Var RealSigns: Byte DATA;
 RealResult: LongInt DATA;
 RealResultCarry: Byte DATA;

Const Pi_2: Real = Pi / 2;
 Pi_24: Real = Pi / 24;
 _Pi: Real = Pi;
 _2Pi: Real = 2 * Pi;
 _2_Pi: Real = 2 / Pi;
 _0_5: Real = 0.5;
 _1: Real = 1;
 Sqrt2: Real = Sqrt (2);
 _1_Sqrt2: Real = 1 / Sqrt (2);
 Ln2: Real = Ln (2);
 Ln2_2: Real = Ln (2) / 2;

Appendix B - simple example of a calculator using files:
Program Files;

// Should work on any 8051 microcontroller

Const
 Oscillator = 22118400;
 BaudRate = 19200;
 BaudRateTimerValue = Byte (- Oscillator div 12 div 32 div BaudRate);

Var SerialPort: Text;
 Num1, Num2: LongInt;

Procedure WriteToSerialPort; Assembler;
Asm
 CLR TI
 MOV SBUF, A
@WaitLoop:
 JNB TI, @WaitLoop
end;

Function ReadFromSerialPort: Char;
Var ByteResult: Byte absolute Result;
begin
 While not RI do;
 RI := False;
 ByteResult := SBUF;

{ Echo character }

 Asm
 MOV A, Result

25

 LCALL WriteToSerialPort
 end;
end;

Procedure Init;
begin
 TL1 := BaudRateTimerValue;
 TH1 := BaudRateTimerValue;
 TMOD := %00100001; { Timer1: no GATE, 8 bit timer, autoreload }
 SCON := %01010000; { Serial Mode 1, Enable Reception }
 TI := True; { Indicate TX ready }
 TR1 := True; { Enable timer 1 }
end;

begin
 Init;
 Assign (SerialPort, ReadFromSerialPort, WriteToSerialPort);

 Writeln (SerialPort, 'Turbo51 IO file demo');
 Repeat
 Write (SerialPort, 'Enter first number: ');
 Readln (SerialPort, Num1);
 Write (SerialPort, 'Enter second number: ');
 Readln (SerialPort, Num2);
 Writeln (SerialPort, Num1, ' + ', Num2, ' = ', Num1 + Num2);
 until False;
end.

Appendix C - Example program of how to use objects:
Program OOP;

{$M $0000, $1000, $0000, $1000, 0}
Type
 TLocation = Object
 X, Y : Integer;
 Procedure Init (InitX, InitY: Word);
 Function GetX: Word;
 Function GetY: Word;
 end;

 TPoint = Object (TLocation)
 Visible: ByteBool;
 Procedure Init (InitX, InitY: Word);
 Procedure Show;
 Procedure Hide;
 Function IsVisible: byteBool;
 Procedure MoveTo (NewX, NewY: Word);
 end;

Const
 clBlack = 0;
 clGreen = 2;

Var Point: TPoint XDATA;

Procedure PutPixel (X, Y: Word; Color: Byte);

26

begin
// Code to draw pixel
end;

Procedure TLocation.Init (InitX, InitY: Word);
begin
 X := InitX;
 Y := InitY;
end;

Function TLocation.GetX: Word;
begin
 GetX := X;
end;

Function TLocation.GetY: Word;
begin
 GetY := Y;
end;

Procedure TPoint.Init (InitX, InitY: Word);
begin
 TLocation.Init (InitX, InitY);
 Visible := False;
end;

Procedure TPoint.Show;
begin
 Visible := True;
 PutPixel (X, Y, clGreen);
end;

Procedure TPoint.Hide;
begin
 Visible := False;
 PutPixel (X, Y, clBlack);
end;

Function TPoint.IsVisible: ByteBool;
begin
 IsVisible := Visible;
end;

Procedure TPoint.MoveTo (NewX, NewY: Word);
begin
 Hide;
 X := NewX;
 Y := NewY;
 Show;
end;

begin
 Point.Init (100, 50); // Initial X,Y at 10, 50
 Point.Show; // APoint turns itself on
 Point.MoveTo (120, 100); // APoint moves to 120, 100
 Point.Hide; // APoint turns itself off

 With Point do

27

 begin
 Init (100, 50); // Initial X, Y at 100, 50
 Show; // APoint turns itself on
 MoveTo (120, 100); // APoint moves to 120, 100
 Hide;
 end;
end.

Appendix D - Examples of constant definitions:
Const
 SystemClock = 22118400;
 ConversionClockValue = (SystemClock div ConversionClock - 1) shl 3;
 PeriodicTimerValue = - SystemClock div 12 div TimerIntsPerSecond;

 SampleFrequency_10 = SamplesPerBit * 11875;
 RDS_SampleRateTimerValue = - 10 * SystemClock div SampleFrequency_10;
 GroupTime = 1040000 div 11875;
 SMB0CRValue = (2 - SystemClock div 2 div SMBusClock) and $FF;
 BaudRateTimerValue1 = - SystemClock div 32 div BaudRateSerial1;

 BaudRateTimerValue_19200 = Word (- SystemClock div 32 div 19200);
 BaudRateTimerValue_38400 = Word (- SystemClock div 32 div 38400);

 BaudRateTimerValue: Array [$01..$02] of Word = (
 BaudRateTimerValue_19200,
 BaudRateTimerValue_38400);

 LedTime = 30;

 SampleTable_0_0_0: Array [0..SamplesPerBit - 1] of Word =
 ({$I Table_0_0_0.inc });

 VersionHi = $01;
 VersionLo = $00;

 Signature = $8051; // Identify 8051 microcontroller

 Greeting = 'PASCAL 8051'#0;
 GreetingString: Array [0..Length (Greeting) - 1] of Char = Greeting;

 ManufacturerKeyData: Array [0..7] of Byte =
 ($DA, $FE, $02, $40, $03, $3D, $B5, $CA);

 BaudRateTimerValue = Word (- 22118400 div 32 div 9600);

 LedTime = 30;
 RS485_Time = 2;
 SetupTime = 30000;
 NoKeyTime = 100;

 DafaultRelayLongPulseTime = 30000 div 32;
 DafaultLightPulseTime = 1800000 div 32;
 DefaultRelayShortPulseTime = 384 div 32;
 DefaultRelayOffPulseTime = 1500 div 32;

 Relay_ON = LowLevel;
 Relay_OFF = HighLevel;

28

 MotorUp = 1;
 MotorDown = 0;

 HexChar: Array [0..15] of Char = '0123456789ABCDEF';

 BlockStart = $AA;
 BlockStartLNG = $CA;

 bpBlockStart = 0;
 bpDestinationAddress = 1;
 bpcommand = 2;
 bpParameter1 = 3;
 bpParameter2 = 4;
 bpSourceAddress = 5;
 bpChecksum = 6;

 bpParameter3 = 7;
 bpParameter4 = 8;

 LNG_ModuleID = $A0;

 Cmd_Relay = $21;

Appendix E - Examples of type declarations:
Type
 PDataWordX = ^TDataWord XDATA;
 TDataWord = Record
 Case Byte of
 0: (Word: Word);
 1: (Byte0, Byte1: Byte);
 2: (Bits: Set of 0..15);
 3: (Pointer: Pointer);
 end;

 TGroupType = (Group_0A, Group_0B, Group_15A, Group_15B);

 PByte = ^Byte;
 PByteX = ^Byte XDATA;
 PPointerX = ^Pointer XDATA;
 TPS = Array [1..8] of Char;
 TRT_Text = Array [1..64] of Char;
 TRT_Flags = (rtToggleAB);
 TRT_FlagSet = Set of TRT_Flags;
 PRTX = ^TRT XDATA;
 TRT = Record
 Flags: TRT_FlagSet;
 RepeatNumber: LongInt;
 Text: TRT_Text;
 end;

 TAF = Array [0..NumberOf_AF_FrequenciesInDataSet - 1] of Byte;

 PEON_AF_X = ^TEON_AF XDATA;
 TEON_AF = Record
 Variant: LongInt;
 Case Byte of

29

 0: (AF_DataWord: Word);
 1: (AF_Data1: Byte; AF_Data2: Byte);
 end;

 TEEPROM_Data = Record
 eeSignature: TSignature;
 eeDataSet: Array [1..NumOfDS] of TDataSet;
 eeEnd: Byte;
 end;

Appendix F - Some examples of variable declarations:
Var
 EthernetReset: Boolean absolute P0.7;
 EthernetMode: Boolean absolute P0.6;

 TempString: String [24] XDATA;
 TempChecksum: Byte;
 TempByte2: Byte absolute TempChecksum;
 DelayTimer: Word XDATA; Volatile;
 SamplePulse: Boolean;
 InputSync: Byte; BitAddressable;
 VideoSync1: Boolean absolute InputSync.0;
 VideoSync2: Boolean absolute InputSync.1;
 LastPCPort: TActiveBuffer;

 RemoteTemperatureReadState: TRemoteTemperatureReadState XDATA;
 TempRemoteTemperature,
 RemoteTemperature: Array [1..4] of Word XDATA;
 RemoteTemperatureThreshold: Word XDATA;

 {$IFDEF TEST }
 TempTimer: Word; Volatile;
 TxBuffer1: Array [0..15] of Byte IDATA;
 {$ENDIF }

 BroadcastReplyTimer_Serial0: Word IDATA; Volatile;

 UART: Array [1..4] of TUART XDATA;

 TX_Buffer_Serial0: TExtendedGeneralPacket XDATA;
 TX_BufferArray_Serial0: TBufferArray absolute TX_Buffer_Serial0;

 PRX_Buffer_Cmd_Message: ^TCmd_Message XDATA absolute PRX_Buffer;

 UartData: Array [1..4] of TUartData IDATA;
 RX_Buffer_UART: Array [1..4] of TExtendedGeneralPacket XDATA;

 EEPROM_Data: TEEPROM_Data XDATA absolute 0;

Appendix G - Example of assembler procedures:
Program AssemblerProcedures;

{ Useless program just to demonstrate assembler procedures }

Const DemoText = 'Turbo51 assembler procedures demo';

30

 ZeroTerminated = 'Zero terminated';

 DemoString: String [Length (DemoText)] = DemoText;
 String0: Array [0 .. Length (ZeroTerminated)] of Char = ZeroTerminated;

Var Number1, Number2, Result: Word;

Procedure Add; Assembler;
Asm
 MOV A, Number1
 ADD A, Number2
 MOV Result, A
 MOV A, Number1 + 1
 ADDC A, Number2 + 1
 MOV Result + 1, A
end;

Procedure Multiply; Assembler;
Asm
 MOV R2, Number1
 MOV R3, Number1 + 1
 MOV R6, Number2
 MOV R7, Number2 + 1

 MOV A, R2
 MOV B, R6
 MUL AB
 XCH A, R2
 XCH A, R7
 XCH A, B
 XCH A, R7
 MUL AB
 ADD A, R7
 XCH A, R3
 MOV B, R6
 MUL AB
 ADD A, R3
 MOV R3, A

 MOV Result, R2
 MOV Result + 1, R3
end;

Procedure CalculateXorValue (Num1, Num2: Word); Assembler;
Asm
 MOV A, Num1
 XRL A, Num2
 MOV R2, A
 MOV A, Num1 + 1
 XRL A, Num2 + 1
 MOV R3, A
end;

Procedure SwapWords (Var Num1, Num2: Word); Assembler;
Asm
 MOV R0, Num1
 MOV R1, Num2

31

 MOV B, @R0
 MOV A, @R1
 MOV @R0, A
 MOV @R1, B

 INC R0
 INC R1

 MOV B, @R0
 MOV A, @R1
 MOV @R0, A
 MOV @R1, B
end;

Procedure WriteString; Assembler;
Asm
// Code to write string in code with address in DPTR
end;

Procedure WriteZeroTerminatedString; Assembler;
Asm
// Code to write zero terminated string in code with address in DPTR
end;

Procedure WriteResult; Assembler;
Asm
// Code to write number in Result variable
end;

begin
 Asm
 MOV DPTR, #DemoString
 LCALL WriteString

 MOV DPTR, #String0
 LCALL WriteZeroTerminatedString

 MOV Number1, #LOW (200)
 MOV Number1 + 1, #HIGH (200)
 MOV Number2, #LOW (40)
 MOV Number2 + 1, #HIGH (40)
 LCALL Add
 LCALL WriteResult

 MOV Number1, #LOW (2000)
 MOV Number1 + 1, #HIGH (2000)
 MOV Number2, #LOW (45)
 MOV Number2 + 1, #HIGH (45)
 LCALL Multiply
 LCALL WriteResult

 MOV CalculateXorValue.Num1, #LOW ($1234)
 MOV CalculateXorValue.Num1 + 1, #HIGH ($1234)
 MOV CalculateXorValue.Num2, #LOW (10000)
 MOV CalculateXorValue.Num2 + 1, #HIGH (10000)
 LCALL CalculateXorValue
 MOV Result, R2

32

 MOV Result + 1, R3
 LCALL WriteResult

 MOV Number1, #LOW (2000)
 MOV Number1 + 1, #HIGH (2000)
 MOV Number2, #LOW (45)
 MOV Number2 + 1, #HIGH (45)
 MOV SwapWords.Num1, #Number1
 MOV SwapWords.Num2, #Number2
 LCALL SwapWords
 LCALL WriteResult
 end;
end.

Appendix H - Example of inline procedures:
{
 This file is part of the Turbo51 code examples.
 Copyright (C) 2008 by Igor Funa

 http://turbo51.com/

 This file is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
}

Program Example4;

{ Usless program just to demonstrate sets and inline procedures/functions }

Type
 TFlag = (fl0, fl1, fl2, fl3, fl4, fl5, fl6);
 TFlagsSet = Set of TFlag;

 TVariantRecord = Record
 Case Byte of
 0: (L: LongInt);
 1: (W0, W1: Word);
 2: (B0, B1, B2, B3: Byte);
 3: (DataWord: Word; LocalFlags: Set of 0..7; Flags: TFlagsSet);
 4: (IndividualBits: Set of 0..31);
 5: (Ch0, Ch1, Ch2, Ch3: Char);
 end;

Const
 InitialFlags = [fl0, fl4, fl5];
 TempFlags = [fl0, fl1, fl3];

Var
 WatchdogClock: Boolean absolute P0.4;

 GlobalFlags: TFlagsSet;
 DataRecord1,
 DataRecord2: TVariantRecord;
 Character: Char;
 B1, B2: Byte;

33

Function UpcaseChar (Ch: Char): Char;
{$I InlineChar.inc }

Function InlineUpcaseChar (Ch: Char): Char; Inline;
{$I InlineChar.inc }

Procedure RestartWatchdog; Inline; Assembler;
Asm
 CPL WatchdogClock;
end;

Procedure Multiply (Var Factor: Byte);
begin
 Factor := Factor * 10;
 If Factor >= 100 then Factor := 0;
end;

Procedure InlineMultiply (Var Factor: Byte); Inline;
begin
 Factor := Factor * 10;
 If Factor >= 100 then Factor := 0;
end;

begin
 GlobalFlags := InitialFlags;

 Include (GlobalFlags, fl4);
 Exclude (GlobalFlags, fl5);
 Change (GlobalFlags, fl6);

 RestartWatchdog;

 DataRecord1.L := $12345678;
 With DataRecord2 do
 begin
 DataWord := DataRecord1.W0 + DataRecord1.W1;
 LocalFlags := [3, 5, 6];
 Flags := GlobalFlags;
 end;

 RestartWatchdog;

 Case fl6 in DataRecord2.Flags of
 True: DataRecord2.Flags := DataRecord2.Flags * TempFlags + [fl2, fl3];
 else DataRecord2.Flags := TempFlags;
 end;

 RestartWatchdog;

 If 0 in DataRecord2.IndividualBits then With DataRecord2 do
 begin
 Include (IndividualBits, 4);
 Exclude (IndividualBits, 15);
 Change (IndividualBits, 31);
 end;

{ Call to function UpcaseChar }

34

 Character := Chr (Ord ('a') + Random (Ord ('z') - Ord ('a') + 1));
 DataRecord1.Ch0 := UpcaseChar (Character);

{ Inline function InlineUpcaseChar }

 Character := Chr (Ord ('a') + Random (Ord ('z') - Ord ('a') + 1));
 DataRecord1.Ch1 := InlineUpcaseChar (Character);

{ Call to procedure Multiply }

 Multiply (DataRecord1.B1);

{ Inline procedure InlineMultiply }

 InlineMultiply (DataRecord1.B1);

{$InlineCode Off }

{ Normal call to Inline function InlineUpcaseChar }

 Character := Chr (Ord ('a') + Random (Ord ('z') - Ord ('a') + 1));
 DataRecord1.Ch1 := InlineUpcaseChar (Character);

{ Normal call to Inline procedure InlineMultiply }

 InlineMultiply (DataRecord1.B1);
end.

Appendix I - Examples of absolute procedures:
Program AbsoluteProcedures;

{ Usless program just to demonstrate procedures/functions at absolute addersses }

{ This procedure will be placed at code address $1000 and will occupy just one byte
(RET) }

Procedure MustBeFixed absolute $1000;
begin
end;

{ This procedure will also occupy just one byte at code address $0045 }

Procedure JustOneByte absolute $45; Assembler;
Asm
 DB $00
{$NoReturn } { Don't generate RET instruction }
end;

{ This procedure will be placed at code address $F000 }

Procedure Restart absolute $F000;
begin
 Asm

35

 LJMP $0000
 end;
end;

begin
// no need to call procedures at absolute addresses, linker will just put them where
they should be
end.

Appendix J - Examples of interrupt procedures:
Program InterruptDemo;

Const
 Const1ms = - 22118400 div 12 div 1000;

Var
 RS485_TX: Boolean absolute P0.3;
 RX_Led: Boolean absolute P0.4;
 TX_Led: Boolean absolute P0.5;

 BlinkTimer: Word; Volatile;
 KeyProcessingTimer: Word; Volatile;
 DelayTimer: Word; Volatile;
 RS485_Timer: Byte; Volatile;
 RX_LedTimer: Byte; Volatile;
 TX_LedTimer: Byte; Volatile;

Procedure TimerProc; Interrupt Timer0; Using 2; { 1 ms interrupt }
 begin
 TL0 := Lo (Const1ms);
 TH0 := Hi (Const1ms);

 Inc (BlinkTimer);
 Inc (KeyProcessingTimer);

 If DelayTimer <> 0 then Dec (DelayTimer);

 If RS485_Timer <> 0 then Dec (RS485_Timer) else RS485_TX := False;
 If RX_LedTimer <> 0 then Dec (RX_LedTimer) else RX_Led := False;
 If TX_LedTimer <> 0 then Dec (TX_LedTimer) else TX_Led := False;
 end;

begin
 { Some code }
end.

Appendix K - Examples of assembler statements:
Asm
 MOV R2, UECP_RX_BufferReadPointer
 MOV R3, UECP_RX_BufferReadPointer + 1
 MOV R4, FrameCRCAddress
 MOV R5, FrameCRCAddress + 1
 @1:
 MOV DPL, R2
 MOV DPH, R3

36

 MOVX A, @DPTR
 INC DPTR
 MOV R2, DPL
 MOV R3, DPH

 XRL A, RX_CRC + 1
 MOV B, #2
 MUL AB
 ADD A, #LOW (CrcTable)
 MOV DPL, A
 MOV A, #HIGH (CrcTable)
 ADDC A, B
 MOV DPH, A

 CLR A
 MOVC A, @A+DPTR
 XRL A, RX_CRC
 MOV RX_CRC + 1,A
 MOV A, #1
 MOVC A, @A + DPTR
 MOV RX_CRC, A

 MOV A, R2
 XRL A, R4
 JNZ @1
 MOV A, R3
 XRL A, R5
 JNZ @1

 MOV DPL, R2
 MOV DPH, R3 { DPTR points to CRC }
 INC DPTR { Move to next frame }
 INC DPTR
 MOV UECP_RX_BufferReadPointer, DPL
 MOV UECP_RX_BufferReadPointer + 1, DPH

 MOV A, RX_CRC
 XRL A, #$FF
 XCH A, RX_CRC + 1
 XRL A, #$FF
 MOV RX_CRC, A

 MOV StoreData.CRC, A
 MOV StoreData.ReadPointer, DPL
 MOV StoreData.ReadPointer + 1, DPH
 LCALL StoreData
end;

37

	 1 Introduction
	 2 General
	 2.1 Command line syntax
	 2.2 Switches and directives
	 2.3 Memory organization
	 2.4 System unit
	 2.5 Files
	 2.6 Objects

	 3 Declarations
	 3.1 Constants
	 3.2 Types
	 3.3 Variables
	 4 Procedures
	 4.1 System procedures
	 4.2 System functions
	 4.3 Assembler procedures
	 4.4 Inline procedures
	 4.5 Absolute procedures
	 4.6 Interrupts

	 5 Assembler
	 5.1 Assembler statement
	 5.2 Compiler internals
	 5.2.1 General
	 5.2.2 Reentrant procedures
	 5.2.3 Methods

	Appendix A – System unit:
	Appendix B - simple example of a calculator using files:
	Appendix C - Example program of how to use objects:
	Appendix D - Examples of constant definitions:
	Appendix E - Examples of type declarations:
	Appendix F - Some examples of variable declarations:
	Appendix G - Example of assembler procedures:
	Appendix H - Example of inline procedures:
	Appendix I - Examples of absolute procedures:
	Appendix J - Examples of interrupt procedures:
	Appendix K - Examples of assembler statements:

