Die Struktur des "Nucleosom Core Particle" des Chromatins

Basiseinheit der Organisation von DNA in Chromosomen (Protein + DNA)

Woher wissen die das eigentlich ??

- einfallendes Teilchen hat Wahrscheinlichkeitsamplitude
- wird gestreut an jedem Atom
- gestreute Amplituden interferieren
- Information über Gitterstruktur

und magnetische Momente, Gitterschwingungen,

sin @

Schwingungen der e- (Plasmonen),

- "Sichtbarmachen" der Struktur erfordert $\lambda \leq a$
- a typisch einige Å (= 100 pm)

Dispersionsrelationen *E(k)*

Max von Laue (1879 – 1960) Nobelpreis für Physik 1914 Röntgenstrahlinterferenzen, begründete Gebiet der Röntgenstrukturanalyse

William Henry Bragg (1862 – 1942)
William Lawrence Bragg (1890 – 1971)
Nobelpreis für Physik (1915)
Bestimmung der Röntgenwellenlänge per Drehkristallmethode
Ermöglichte Strukturanalyse

vieler anorganischer Substanzen

W.L. und W.H. Bragg (1913)

spiegeInde teilweise Reflektion an "Netzebenen"

Konstruktive Interferenz dann, wenn:

 $2 d sin (\Theta) = n \lambda$

Basisgleichung der Röntgendiffraktometrie

Eindringtiefe: VIELstrahlinterferenz

Röntgeneindringtiefe

10³ - 10⁵ Lagen

Konsequenz:

scharfe (!!) Reflexe
(falls Kristall "perfekt")

Von-Laue Formulierung der Beugung

Phasenunterschied zwischen Streuwelle 1 & 2: $\exp\left(i\left(\vec{k}-\vec{k}'\right)\vec{r}\right)$

Streuamplitude vom ganzen Kristall: $A = \int_{Kristall} dV \ \rho(\vec{r}) \exp(i(\vec{k} - \vec{k}')\vec{r})$

Streudichte ρ erfüllt: $\rho(\vec{r}) = \rho(\vec{r} + \vec{T})$

Also darstellbar als: $\rho(\vec{r}) = \sum_{\vec{G} \in REL} \rho_{\vec{G}} \exp(i \vec{G} \vec{r})$

Eingesetzt:
$$A = \sum_{\vec{G} \in REL} \int dV \rho_{\vec{G}} \exp(i(\vec{G} - \Delta \vec{k})\vec{r}) \qquad \Delta \vec{k} := \vec{k}' - \vec{k}$$

Nur $\neq 0$ falls: $\Delta \vec{k} = \vec{G}$

von Laue Gleichung

Beugungsreflexe gerade dann,

wenn Streuvektor Ak ein Vektor des reziproken Gitters ist

Ewald Konstruktion

Energie- und "Impuls"erhaltung

Zu erfüllen: $\Delta \vec{k} = \vec{G}$

und: |k| = |k'|

Zeichne Kugel mit Radius *k* um die Spitze von *k*! Falls ein *G_{hkl}* auf Kugeloberfläche liegt: Reflex *A_{hkl}*

Falls **k** < **G**_{min}: kein Reflex

entspricht: λ zu groß $n\lambda = 2d \sin \vartheta$

Falls Einheitszelle sehr groß (z. B. Proteine 10 - 100 nm):

- G_{min} ≪ k
- viele, engliegende Reflexe
- erfordert gute Kristalle f
 ür scharfe Reflexe
- plus gute Monochromasie
- plus hohe Strahlparallelität

Rubisco: protein controlling CO_2 uptake of green plants (~10¹¹ tons CO_2 per year)

Unit cell:

- a ≈ b = 15.72 nm
- c = 20.13 nm
- ≈ 200.000 C, O, N atoms + 32 Mn

data:

- 1s @Daresbury,
 - C.-I. Bränden et alii
- \approx 100 000 spots
 - (6 50 keV)

14

Dynamik: 10⁴ fehlt hier!

Umformulierung von Laue (mit Ziel k' zu entfernen)

$$\Delta \vec{k} := \vec{k} ' - \vec{k} \qquad \Delta \vec{k} = \vec{G}$$

 $\Rightarrow \vec{k} - \vec{G} = \vec{k}'$ denn mit **G** ist auch **-G** \in REL

$$\Rightarrow (\vec{k} - \vec{G})^2 = (\vec{k}')^2$$

Nur elastische Streuung: |k'| = |k|

 $\Rightarrow 2\vec{k}\vec{G} = |\vec{G}|^2$

Beziehung zur Bragg-Bedingung

 $\Rightarrow 2 d \sin \theta = n\lambda$ (2G, 3G, ... ergeben n = 2, 3, ...)

Beugung und Brillouinzonen(ränder)

×

×

×

(30)

k'

×

(20)

×

(03)

(02)

(01)

(00)

×

×

(10)

Projektion von k auf Richtung von G muss Länge G/2 haben! Ebenso für alle G_{hkl} konstruktive Interferenz, wenn k auf einer Mittelsenkrechten liegt (vgl. Konstruktion der Wigner-Seitz-Zelle) Ränder der Brillouinzonen

Bedeutung der Brillouinzone ?

Wellenvektoren auf BZ-Rändern erfüllen Beugungsbedingung \rightarrow konstruktive Interferenz der Wellen mit **k**, **k'**

 \rightarrow stehende Röntgenwellen

Wieviel Reflexe gibt es üblicherweise?

Vorüberlegung: Streuung an 1D-Kette

folglich: im Allgemeinen keine Reflexe ...

Nochmal, aber formaler...

$$\Delta \vec{k} = \vec{G_{hkl}} = h\vec{g_1} + k\vec{g_2} + l\vec{g_3}$$

multipliziere mit $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_3}$. Nutze $\vec{a}_i \vec{g}_j = 2\pi \delta_{ij}$

$$\Rightarrow \vec{a_1} \Delta \vec{k} = 2\pi h \qquad \vec{a_2} \Delta \vec{k} = 2\pi k \qquad \vec{a_3} \Delta \vec{k} = 2\pi l$$
$$\sum \cos^2 \alpha = 1$$

Vier Bedingungen f
ür die Richtungscosinus von Δk:
… überbestimmt.

Messmethoden der Röntgenbeugung

Für $\Delta \vec{k} = \vec{G}$ existieren "im Allgemeinen" keine Lösungen.

Wie möglichst viele Reflexe sehen?

- λ- Kontinuum
 Laue Methode
- festes λ ; Kristall drehen
- festes λ ; Kristall-Pulver
- Drehkristallmethode
 - Debye-Scherrermethode

Drehkristallmethode

Drehkristallmethode im k-Raum

Mit monochromatischer Röntgenquelle erhält man Diffraktogramm

Alternative Anwendung: bekannter Einkristall (z. B. Si) dient als Monochromator von Röntgenlicht aus einer Breitbandquelle

Abb. 3.6: Röntgenspektrum eines YBCO (24% Pr / Y) - Einkristalls. Unten und * : Reflexe des Probenhalters. Im Inset ist sin(θ) gegenüber dem Miller-Index l' zur Bestimmung des c-Achsen-Parameters aufgetragen.

Laue – Methode

Bremsstrahlung: Röntgenkontinuum 20 pm < λ < 200 pm

$$\lambda_{min} = \frac{hc}{eU}$$
$$k_{max} = \frac{2\pi}{\lambda_{min}}$$

Laueverfahren: Beispieldaten

- Transmission, Cu- K_a
- 4 / 2-zählige Symmetrie
- tetragonales System
 (Quaderförmige EZ, primitiv oder zentriert)

Debye Scherrer Methode

- Pulverproben alle Orientierungen vorhanden
- mit Vorinformationen (z. B. Kristallsystem): Messung von a, b, c
- Idee: Debye-Scherrer wie Drehkristall, wobei die Drehachse jede beliebige Orientierung annimmt
- d.h. aus Kreisen werden Kugeln

Debye Scherrer Methode

Beugung am Gitter mit Basis - Idee

- Gitter bestimmt, wann Interferenz von Gitterpunkten auftritt
- Gitter ist Fiktion letztlich streuen Atome/Elektronen
- Deshalb: Streuwellen von den verschiedenen Atomen der Basis
- Interferenz
- Verstärkung oder Auslöschung von Reflexen
- Also: Reflexintensitäten nutzbar, um Basis zu vermessen

Beugung am Gitter mit Basis - Formalismus $A_{\vec{G}} = \int dV \ \rho(\vec{r}) e^{-i\vec{G}\vec{r}}$ Amplitude des Reflexes G Kristall

Kinematische Näherung (ok für Röntgen – nicht für e⁻)

 $A_{\vec{G}} = N \int_{Zelle} dV \rho(\vec{r}) e^{-i\vec{G}\vec{r}} = N S_{\vec{G}}$ Kristall mit N identischen Zellen:

Strukturfaktor

kann komplex sein; gemessen wird Intensität

f

Basis besteht aus Atomen j: $\rho(\vec{r}) = \sum_{i} \rho_{j}(\vec{r} - \vec{r_{j}})$

$$\Rightarrow S_{G} = \sum_{j} \int dV \rho_{j} (\vec{r} - \vec{r}_{j}) e^{-i\vec{G}\vec{r}}$$

$$= \sum_{j} e^{-iG\vec{r}_{j}} \int dV \rho_{j} (\vec{r} - \vec{r}_{j}) e^{-i\vec{G}(\vec{r} - \vec{r}_{j})}$$

$$= \sum_{j} \exp(-i\vec{G}\vec{r}_{j}) f_{j}$$
Atomarer Formfaktor

Beispiel zum Strukturfaktor

$$S_{G} = \sum_{j} f_{j} \exp(-i\vec{G}\vec{r}_{j})$$

$$\vec{G} = h\vec{b}_{1} + k\vec{b}_{2} + l\vec{b}_{3} \quad \vec{r}_{j} = x_{j}\vec{a}_{1} + y_{j}\vec{a}_{2} + z_{j}\vec{a}_{3}$$

$$\vec{a}_{i}\vec{b}_{j} = 2\pi\delta_{ij}$$

Natrium:

bcc, 2 gleiche Atome in Basis an (0, 0, 0) und (1/2, 1/2, 1/2) $\Rightarrow S = f_{Na} \Big(1 + \exp(-i\pi(h+k+l)) \Big)$ $S = 0 \quad \text{für (h+k+l) ungerade}$ $S = 2 f_{Na} \quad \text{für (h+k+l) gerade}$

Sichtbar z. B. (200) (222), nicht aber (100) (111).

Unterschiedliche Bravaisgitter des gleichen Kristallsystems unterscheidbar

NaCl Struktur

$$R_0 = (0,0,0)$$
 $R_1 = \frac{a}{2} (1,1,1)$
 $F = f_1 + f_2 \exp(i\pi(g_1 + g_2 + g_3))$

Falls $f_1 = f_2 = f$: $F = f \cdot \begin{cases} 2; & \sum g_i = 2m \\ 0; & \sum g_i = 2m+1 \end{cases}$

$$Z(K) = 19, Z(CI) = 17$$

 $\rho_e(K^+) = 18, \rho_e(CI^-) = 18$

Vergleich der Röntgenretlexionen an KCI-und KBr-Puiver. In KCI ist die Elektronenzahl im K⁺- und im CI⁻-Ion gleich. Die Streuamplituden $f(K^+)$ und $f(CI^-)$ sind deshalb fast identisch, so daß der Kristall für Röntgenstrahlen wie ein einatomiges, einfach kubisches Gitter mit der Gitterkonstanten a/2 aussieht. Bei den Reflexen erscheinen nur die geradzahligen indizes, wenn sie auf ein kubisches Gitter mit der Gitterkonstanten *a* bezogen werden. Im KBr sind die Formfaktoren von K⁺ und Br⁻ sehr verschieden, so daß alle Reflexe des fcc-Gitters auftreten. (Mit freundlicher Genehmigung von Robert van Nordstrand.)

Atomic Form Factor $f_j \approx Z_j$ number of electrons

Influence of G?

$$f_{j} = \int_{atom j} dV \ \rho(\vec{r}) \exp(i\vec{G}\vec{r})$$

 $\vec{G}\vec{r} = |G||r|\cos\alpha$ and atom spherically symmetric

$$f_{j} = 2\pi \int_{0}^{\infty} \int_{-1}^{1} dr r^{2} d(\cos \alpha) \rho(r) \exp(iGr \cos \alpha)$$
$$= 2\pi \int dr r^{2} \rho(r) \frac{\exp(iGr) - \exp(-iGr)}{iGr}$$

$$= 4\pi \int dr r^2 \rho(r) \quad \frac{\sin(Gr)}{Gr}$$

decreases with increasing G

Experimentelle atomare Streufaktoren von Al

fcc-Kristall: keine Reflexe mit gemischt geraden und ungeraden Indizes Batterman et al., Phys. Rev. B **122**, 68 (1961)

Faltung

Convolution

Atomare Formfaktoren

(aus der Kernphysik)

Exkurs: Kevin Cowtan's Book of Fourier

www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html

Complex numbers have amplitude & phase

Colour scheme:

Amplitude by colour saturation and brightness

Phase by hue; 0° red, 120° green, 240° blue

Positive real numbers red, negative real numbers cyan

White represents zero magnitude

An atom, and its Fourier Transform

Both circularly symmetric atom is sharp feature, transform is broad - reciprocal relationship

A molecule, and its Fourier Transform

Molecule of seven atoms

Transform shows some detail, but overall shape \approx atomic transform Molecule = convolution of point atom structure & atomic shape Transform = product of point atom transform & atomic transform

A duck, and its Fourier Transform:

Crystallographic Interpretation:

Real image gives rise to a Hermitian diffraction pattern

Animal Magic

The Fourier Duck, and its Fourier transform:

The Fourier Cat, and its Fourier transform:

Mix them up

Magnitudes from Duck transform with phases from Cat transform

(Brightness from duck & colours from cat)

Magnitudes from Cat transform & phases from Duck transform

Phase image is still visible,

whereas magnitude image has gone.

Crystallographic Interpretation:

X-ray detection uses diffraction

magnitudes only.

Unfortunately phases contain the bulk

of the structural information.

... that is why crystallography is difficult.

Information aus Beugungsexperimenten

Position der Beugungsmaxima

Periodizität / Gitter

Intensität der Maxima

Struktur/Formfaktor – Basis

n.b. Phasenproblem

T > 0: Atome vibrieren; Reflexe schwächer, aber gleich breit hohe Fourierkomponenten (große G) stärker betroffen Intensität 'geht' in diffusen Untergrund

Debye-Waller-Faktor
$$I \sim e^{-\alpha T}$$
 $I \sim e^{-\beta |G|}$ Peter Debye:N4
Ivar Waller: S

$$\begin{split} F_{j} &\sim \overline{\exp\left(i\vec{G}(\vec{r}_{j}+\vec{u})\right)} = F_{j,0} \exp\left(i\vec{G}\vec{u}\right) \\ &\approx F_{j,0} \left(1 + i\vec{G}\vec{u} - \frac{1}{2}(\vec{G}\vec{u})^{2}\right) \\ &= F_{j,0} \left(1 + 0 - \frac{1}{2} \ \overline{G^{2}} \ \overline{u^{2}} \ \overline{\cos^{2}\theta}\right) \\ &\overline{\cos^{2}\theta} = \frac{1}{4\pi} \int \cos^{2}\theta \ \sin\theta \ d\theta \ d\phi = \frac{1}{3} \\ &\Rightarrow F_{j} &\sim F_{j,0} \left(1 - \frac{1}{6} \ G^{2} \ \overline{u^{2}}\right) \approx F_{j,0} \exp\left(-\frac{1}{6} \ G^{2} \ \overline{u^{2}}\right) \\ &\Rightarrow I &\sim F_{j}^{2} \Rightarrow I = I_{0} \exp\left(-\frac{1}{3} \ \overline{u^{2}} \ G^{2}\right) \\ &\xrightarrow{Debye-Waller-Faktor} \end{split}$$

harmonischer Oszillator:

$$\overline{U} = \frac{3}{2} kT = \frac{1}{2} D \overline{u^2} = \frac{1}{2} m \omega \overline{u^2} \Rightarrow u^2 = \frac{3kT}{m\omega^2}$$

$$\Rightarrow I = I_0 \exp\left(-kT \frac{G^2}{m\omega^2}\right)$$

I nimmt mit T und |G| exponentiell ab

 \rightarrow Vibrationsamplitude abschätzbar.

Bei T=0: Nullpunktsenergie:
$$E_0 = \frac{3}{2} \hbar \omega$$

Zur Hälfte kin. Energie:

$$\Rightarrow \overline{u} = \frac{3}{4}\hbar\omega$$

$$\Rightarrow I = I_0 \exp\left(\frac{-\hbar G^2}{2m\omega}\right)$$

Mit G = 10^{11} m⁻¹, $\omega = 10^{14}$ s⁻¹, m = 10^{-25} kg:

Exponent \approx - 0.1, also: I/I₀ \approx 90 % ⁴⁶

Particles and their fields of application

- X rays: bulk, surfaces, layers
- Neutrons: bulk
- Electrons: surfaces, thin films, milled samples
- Helium atoms: surfaces

Sources

- X rays: X ray tube (anode), synchrotron source (polarized)
- Neutrons: reactor
- Electrons: thermoelectric & photoelectric effects (spin, time)
- Helium atoms: jet from expansion through nozzle

Rubisco: protein controlling CO₂ uptake of green plants some 10¹¹ tons CO₂ per year

Unit cell:

- a ≈ b = 15.72 nm
- c = 20.13 nm
- ≈ 200.000 C, O, N atoms + 32 Mn

data:

- 1s @Daresbury,
 - C.-I. Bränden et alii
- \approx 100.000 spots

(6-50 keV)

Dynamik: 10⁴ fehlt hier!

Schwingende Nanoschichten im Röntgen-Stroboskop

Der Anregungs-Impuls versetzt das Kristallgitter in Bewegung. Nach einer Zeitverzögerung Δt wird der Röntgen-Abtastimpuls am Gittervektor G unter der Bragg-Bedingung G = K' – K gestreut. Daraus wird die momentane Gitterkonstante d(t) = $2\pi/G(t)$ bestimmt.

Bargheer et al., PhiuZ 2 (2007)

Bargheer et al., PhiuZ 2 (2007) Nanoschichtsystem aus metallischem SRO und PZT, das wegen der Verschiebung der Anionen O²⁻ (blau) gegen die Kationen Pb⁴⁺ (rot) und Ti⁴⁺ (grau) eine ferroelektrische Polarisation P₀ aufweist. Schon nach 2 ps ist die Einheitszelle komprimiert und die ferroelektrische Polarisation P(t) verschwunden. Die messbaren Änderungen $\Delta d/d_0$ der Gitterkonstante d₀ = 0,409 nm liegen im 100-fm-Bereich.

Thermal neutrons

- ◆ U^{235} + n → SP_1 + SP_2 + 2...3 n + Energie SP_n : e.g. Xe^{143,} Sr⁹⁰
- Moderation using C, D_2O , H_2O

e. g., Institut Laue Langevin, Grenoble
 57 MW, 10 cm beam diametre, 1.5 x 10¹⁵ n/cm²s
 2 ... 100 meV corresponding to 6 ... 0.6 Å

Dreiachsenspektrometer - (in)elastische Neutronenstreuung

December, 1927

Vol. 30, No. 6

THE

PHYSICAL REVIEW

DIFFRACTION OF ELECTRONS BY A CRYSTAL OF NICKEL

By C. DAVISSON AND L. H. GERMER

The most striking characteristic of these beams is a one to one correspondence, presently to be described, which the strongest of them bear to the Laue beams that would be found issuing from the same crystal if the incident beam were a beam of x-rays. Certain others appear to be analogues, not of Laue beams, but of optical diffraction beams from plane reflection gratings—the lines of these gratings being lines or rows of atoms in the surface of the crystal. Because of these similarities between the scattering of electrons by the crystal and the scattering of waves by three- and twodimensional gratings a description of the occurrence and behavior of the electron diffraction beams in terms of the scattering of an equivalent wave radiation by the atoms of the crystal, and its subsequent interference, is not only possible, but most simple and natural. This involves the association of a wave-length with the incident electron beam, and this wave-length turns out to be in acceptable agreement with the value h/mv of the undulatory mechanics, Planck's action constant divided by the momentum of the electron.

56