

Zustände pro Band

1. Näherung fast freier Elektronen

Kristall mit Volumen V, N Atome, monatomare Basis also: $N = V/V_{\text{Zelle}}$ Einheitszellen

Elektronenzustand im k-Raum: $(2\pi)^3/V$

Volumen der BZ: $(2\pi)^3/V_{Zelle}$

Zahl der Zustände in BZ: $N = V/V_{Zelle}$.

Pro Band also N verschiedene k, mit Spin 2N Elektronen je Band

2. Näherung stark gebundener Elektronen

Gleicher Kristall

N-fach entartete atomaren Energieniveaus E^{i}_{A}

spalten in Bänder mit je N Zuständen (x 2 für Spinentartung)

Metal or Insulator: 1D case

Each band: 2 states per unit cell

 → even number of electrons: insulator (or semiconductor)
→ odd number of electrons: metal Alkali metals: valency 1

But: Alkaline earths have valency 2 nevertheless: metals

3D effect: overlapping bands in different k-directions

Metal or Insulator: 3D case

Energieniveaus freier Elektronen für ein fcc-Gitter

 ε_x : Energie im Punkt X, $\bar{h}^2/2m [2\pi/a]^2$

Horizontalen: E_F für angegebene Elektronenzahlen

Punkte auf den Kurven: Entartung der Niveaus

aus F. Herman, ,,An Atomistic Approach to the Nature and Properties of Materials'', J. A. Pask, ed., Wiley, New York (1967)

3D dispersion with $U_G = 0$

when $U_G \neq 0$: some degeneracies lifted gaps open up

atomaren s- und p-Orbitale bilden ein sp³-Hybridorbital

bindende & antibindende Zustände

- 2 Atome in primitiver Einheitszelle, je mit 4 Elektronen *sp*³-Band vollständig gefüllt Lücke zum unbesetzten antibindenden *sp*³-Band
 - → Diamant ist Nichtleiter, Zinn ein Metall (oder HL)

	$E_{_{\rm gap}}$ /eV	<i>a</i> /nm
С	5	0.365
Si	1.1	0.534
Ge	1.0	0.566
Sn	Metall	0.646

Bandstruktur von Cu Symbole: exp. Daten Courths & Hüfner, Phys. Rep. **112**, 55 (1984) lokalisierte, anistrope 3*d*-Orbitale ergeben fünf schmale Bänder 4*s*-Band wesentlich breiter, Dispersion wie freie Elektronen

Fermiflächen

Fermi surface of a divalent 2D-metal within the NFE-model

Fermi surface of a trivalent 2D-metal within the NFE-model

Äußere Oberflächen der 1., 2., 3. BZ Innere Oberflächen der 2. = äußere der 1., usf.

Fermifläche vierwertiges fcc-Metall in 3D

BZ voll in Fermikugel
BZ teils.

2. BZ

3. BZ

4. BZ

Fermiflächen einfacher Metalle

Alkalimetalle bcc

Münzmetalle fcc

(Quelle: Physics Department, University of Florida)

Fermiflächen

Ca, Sr, Al, Ni: fcc

Zn, Cd: eigentlich hcp, gezeigt ist fcc-Struktur zum Vergleich mit Ca, Sr (Quelle: Physics Department, University of Florida)

Photoelectron Spectroscopy

Today: Fermi surface mapping is a routine job

Constant-|k| cut through Fermi surface of Cu(100) rrrrr BERKELEY L model data Expt. probes this hemisphercal surface hv=83 eV

0