Halbleiter – einige "damals" offene Fragen

Leitfähigkeit steigt mit Temperatur

(Metalle: $\sigma = ne^{2}\tau/m$, n=const, τ bestimmt σ , fällt wg. e-ph-Streuung)

Ursache: $n \sim \exp(-E_A/k_B T)$

extreme Streuung experimenteller Daten

Photoleitung

Gleichrichtung an Halbleiterkontakten

	ρ (Ωcm)
metals	10-6
semiconductors	10 ⁻³ 10 ⁹
insulators	10 ²²

Drastischer Einfluss der Probenreinheit

10⁻⁸ at% spürbar

 10^3 -Änderung der Defektdichte ändert σ um 10^{12}

10"

Sb-doped Ge

-2

Note: these are very low concentrations

Elemente

mit halbleitenden

Modifikationen

	10 Perioden Perioden
4.0020 H	B 1
Helio	
2	K-Schale n=1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e 2
stoff stoff stoff	K-Schole Det
	L-Schale 2
26,982 28,086 30,974 32,06 35,453 39,94 Al Si P S Cl Al 13 14 Sili- Phos- Schwe- Chlor Argo Mu- Sili- Phor fel Chlor Argo	r 3
	K-Schale n=1
Ia IIa 26 26 26 26 26 26 26	L-Schale 2 M-Schale 3
546 65,38 69,72 72,59 74,922 78,96 79,904 83,80 Cu 30 Gallium Ger- manium Ass Selen Br K	r 4
2 3 3	K-Schale n=1 L-Schale 2 M-Schale 3 N-Schale 4
7,87 112,40 114,82 118,69 121,75 127,60 126,90 131,30 Ag Cd In Sn Sn Sb Te J<	e 5
2 2 2 2 2 2 2 2 2 5 2 6 2 6 2 6 2 6 2 6 5 10 2 6 10 2 <	K-Schale n=1 L-Schale 2 M-Schale 3 N-Schale 4 O-Schale 5
AU HG SILVER 200,59 204,37 207,2 208,98 AU HG SILVER ASTAL SILVER ASTA	n 6

Verbindungshalbleiter

Grad der halbleitenden Verbindungen	Zahl der möglichen Kombina- tionen	real vorhandene Kombina- tionen	Beispiele	Beispiel für konkrete halb- leitende Verbindungen
binär	21	9	$A^{III}B^{V}$, $A^{II}B^{IV}$, $A^{I}B^{VII}$ $A^{II}_{2}B^{VI}_{3}$, $A^{II}_{3}B^{VII}_{3}$, $A^{III}_{2}B^{VI}$	GaAs InSb, CdS
ternär	70	10	$A^{I}B^{III}C_{2}^{VI}, A_{2}^{I}B^{IV}C_{3}^{VI}$ $A^{II}B^{IV}C_{2}^{V}, A_{3}^{I}B^{V}C_{4}^{VI}$	$CuGaSe_2$
quaternär	105	37	$\mathbf{A_{3y}^{I}B_{1/2-4y}^{II}C_{y}^{V}D_{1/2}^{VI}}$	CuGaSe ₂ /GaAs
5komponentig	84	42	$\begin{array}{ccc} A^{III}B^{V}/A^{I}B^{III}C_{2}^{VI}/A_{2}^{III}B^{IV}C^{VI} \\ m & /n & /1-m-n \end{array}$	_
6komponentig	35	21	$A_{1-x-y-z-u-i}B_xC_yD_zE_uF_v$	
7komponentig	6	4	$A_{1-x-y-z-u-v-w}B_xC_yD_zE_uF_vG_w$	

einige **organische** Halbleiter

		$rac{\mu_{n}}{\mathrm{cm}^{2}/\mathrm{V}\cdot\mathrm{s}}$	$rac{\mu_p}{\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}}$
Benzen		1,5	0,2
Naphtalen		0,7	1,4
1,4 – Dibrom – naphtalen	Br	0,03	0,9
Anthracen		2,0	2,0
Phenazin		1,1	
Phenothiazin	NH	5	0,1
Pyren			0,35
p - Terphenyl			3·10 ⁻²
Stilben	CH=CH-	-	2·10 ⁻³

6

Photons are an efficient source of energy but not of wave vector, while **phonons** are an efficient source of wave vector and not of energy

Bild 10.2 Hunklinger Optische Absorption bei direkter Bandlücke

(a) Schema des Absorptionsvorgangs

Dicker Pfeil: Übergang minimaler Energie. Gestrichelter Pfeil: höhere Photonenenergie (b) Optischer Absorptionskoeffizient von InSb, *logarithmisch*, gegen Photonenenergie Nach G.W. Gobeli, H.Y. Fan, Phys. Rev. **119**, 613 (1960)

Bild 10.3 Hunklinger Optische Absorption bei indirekter Bandlücke

(a) Schema des Prozesses.

 $E_{L'}$: Energie des Leitungsbandminimums am Γ -Punkt

Übergang minimaler Energie (durchgezogener Pfeil) erfordert das Mitwirken eines Phonons. Der direkte Übergang kleinster Energie ist gestrichelt gezeichnet.

(b) Absorptionskoeffizient von Ge, logarithmisch, gegen Photonenenergie. Nach W.C. Dash, R. Newman, Phys. Rev. **99**, 1151 (1955)

Tabelle 8.1: Energielücke zwischen Valenz- und Leitungsband.

(i = indirekte Lücke, d = direkte Lücke)

		a super	$E_{\mathbf{g}}$, eV			Ŀ	$E_{\rm g}, {\rm eV}$	
	Kristall	Lücke	0 K	300 K	Kristall	Lücke	0 K	300 K	
	Diamant	i	5,4		SiC (hex)	1	3,0	_	i eš
	Si	i	1,17	1,11	Te	d	0,33		
IV	Ge	i	0,744	0,66	HgTe ^a	d	-0,30		
	α Sn	d	0,00	0,00	PbS	d	0,286	0,34-0),37
	InSb	d	0,23	0,17	PbSe	i	0,165	0,27	
	InAs	d	0,43	0,36	PbTe	i	0,190	0,29	
	InP	d	1,42	1,27	CdS	d	2,582	2,42	TT /\ /T
	GaP	i	2,32	2,25	CdSe	d	1,840	1,74	11/VI
	GaAs	d	1,52	1,43	CdTe	d	1,607	1,44	
III/V	GaSb	d	0,81	0,68	SnTe	d	0,3	0,18	
	AlSb	i	1,65	1,6	Cu ₂ O	d	2,172	- <u></u>	

^a HgTe ist ein Halbmetall, die Bänder überlappen.

(1) Detektor / Emitter

(2) $E_{G} = E_{G}(T)$, warum? 11

ferently

Fig. 12.4. Typical bandstructure of a III-V semiconductor, in this case GaAs. (After [12.1])

Effektive-Masse-Näherung

Fig. 131: Flächen konstanter Energie für Leitungselektronen in Silizium und Germanium

Quantitatives ...

	3	E _g (eV)@RT	Art der Lücke	m _n /m _e	m _p /m _e	n _i (cm ⁻³)
Ge	16	0,67	i	1,6	0,04	2,4 x 10 ¹³
					0,28	
Si	11,9	1,1	i	0,98	0,16	$1,5 \times 10^{10}$
					0,49	
GaAs	13,1	1,43	d	0,067	0,082	5 x 10 ⁷
Konse	quenze	n? (optoelo, G	GHz)		ţΕ	
			E		ight les (m* _{ub})	heavy holes (m* _{hh})

"split-off"

(m*_{soh})

holes

Fig. 12.3 Schematic bandstructure of Si and Ge near the valence band edge

 Δ : spin-orbit splitting

Intrinsischer Halbleiter - Ladungsträgerstatistik Gegeben E_{g} , m_{p}^{*} , m_{n}^{*} , wo liegt μ (E_{F})?

 $\mathbf{D}_{\mathbf{v}} \neq \mathbf{D}_{\mathbf{c}}$

17

(T stark übertrieben) $\mathbf{D}_{\mathbf{v}} = \mathbf{D}_{\mathbf{c}}$

Ladungsträgerstatistik - intrinsischer Fall:

$$n = 2 \int_{E_c}^{\infty} dE D_C(E) f(E)$$
 $p = 2 \int_{-\infty}^{E_v} dE D_V(E) [1 - f(E)]$

Eff.-Massenäherung: parabolische Zustandsdichte des 3D-FEG

$$D_{C} = \frac{1}{4\pi^{2}} \left(2\frac{m_{n}^{*}}{\hbar^{2}} \right)^{\frac{3}{2}} \sqrt{E - E_{C}}$$

$$\Rightarrow \quad n = \frac{1}{2\pi^{2}} \left(2\frac{m_{n}^{*}}{\hbar^{2}} \right)^{\frac{3}{2}} \int_{E_{c}}^{\infty} dE \frac{\sqrt{E - E_{C}}}{\exp\left(\frac{E - \mu}{k_{B}T}\right) + 1}$$

$$x := \frac{1}{k_B T} (E - E_C) \qquad \alpha := \frac{1}{k_B T} (\mu - E_C) \qquad n_0 := \frac{1}{4} \left(\frac{2m_n^* k_B T}{\hbar^2 \pi} \right)^{\frac{3}{2}}_{18}$$

$$\Rightarrow n = \frac{2}{\pi}n_0 \int dx \frac{\sqrt{x}}{\exp(x-\alpha)+1} = \frac{2}{\pi}n_0 F_{1/2}(\alpha) \qquad \text{Fermiintegral } (\sqrt{2})$$

Näherungslösung für kleine *T*:

 $E_{C} - \mu \gg k_{B}T$, also $\alpha \ll 1$ $F_{1/2}(\alpha) \approx \frac{1}{2} \sqrt{\pi} \exp(\alpha)$ A & M, Appendix C, Sommerfeld expansion

$$\Rightarrow n = n_0 \exp\left(\frac{\mu - E_C}{k_B T}\right)$$

Formal wie

Boltzmannfaktor zum Bezugsniveau E_c mal eff. Zustandsdichte n_o

aber
$$n_0 = n_0(T)$$
 statt n_0 oft N_C^{eff}

Löcherdichte:

Ladungsneutralität muss erfüllt sein: n = p

$$n_0 \exp\left(\frac{\mu - E_C}{k_B T}\right) = p_0 \exp\left(\frac{E_V - \mu}{k_B T}\right) \qquad p_0 := \frac{1}{4} \left(\frac{2m_{np}^* k_B T}{\hbar^2 \pi}\right)^{\frac{3}{2}}$$

$$\mu(T) = \frac{E_{c} + E_{v}}{2} + \frac{3}{4} k_{B}T \ln \left| \frac{m_{p}^{*}}{m_{n}^{*}} \right|$$

T=0: Mitte T>0: schiebt zum Band mit kleinerer Zustandsdichte

Folgerung: "Massenwirkungsgesetz"

$$np = n_0 p_0 \exp\left(\frac{\mu - E_c}{k_B T} + \frac{E_v - \mu}{k_B T}\right) = n_0 p_0 \exp\left(\frac{E_v - E_c}{k_B T}\right)$$

intrinsische Ladungsträgerdichte

$$n_{i} = p_{i} = \sqrt{np} = 2\left(\frac{k_{B}T}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} \left(m_{n}^{*}m_{p}^{*}\right)^{\frac{3}{4}} \exp\left(-\frac{E_{g}}{2k_{B}T}\right) \quad mit \ E_{g} = E_{C} - E_{V}$$

Density of e⁻ in conduction band @ 300 K, $m^*=m_e$

$E_{_G}$ (eV)	n _i (cm ⁻³)
4	10 ⁻¹⁵
1	1011
0.25	10 ¹⁷

Boltzmann approximation is excellent at RT for $E_{g} \approx 1 \text{ eV}$ (width of Fermi edge « E_{g})

 $\sigma = |e| (n \mu_n + p \mu_p)$

Intrinsic conductivity σ is extremely low at RT with 1 eV gap

Gibt es intrinsische Halbleiter?

Minimale Defektdichte ca. 10¹² cm⁻³ (vgl. atomare Dichte)

n, bei 300 K: Ge 2,4 10^{12} cm⁻³ intrinsisch

Si 1,5 10¹⁰ cm⁻³ extrinsisch

Dotierung

z. B.: Gruppe IV Halbleiter + Spuren von 3- oder 5-wertige Fremdatome

5-wertig: P, As, Sb s²p³ T=0: 5 Elektronen T>0: ionisiert Rumpf⁺ verliert e⁻ Donator

3-wertig: B, Ga, Al, In sp³

- T=0: 3 Elektronen
- T>0: ionisiert

Rumpf bindet h⁺ schwach

Akzeptor

(n.b.: andere Defekte, Selbstkompensation)

Donator (a) bzw. Akzeptor (b) in einem Si-Gitter Abb. 12.6 Ibach-Lüth Substitutionelles, fünfwertiges Phosphoratom hat schwach gebundenes Elektron. Dreiwertiges Bor nimmt zusätzliches auf und erzeugt so schwach gebundenes Loch.

Wasserstoffmodell

$$E_n = -\frac{1}{\left(4\pi\epsilon_0\epsilon_R\right)^2} \frac{m^*e^4}{2\hbar^2} \frac{1}{n^2} \qquad \qquad \epsilon_R \sim 10, \ m^* \sim 0.1 m_{e^{-25}}$$

Why ε_R ?

$$r \sim \varepsilon_{_R} r_{_H} \approx 12 r_{_H}$$
 in Si

 \rightarrow orbit encloses \approx 1000 atoms

Donors provide extra electrons in CB

 $\Rightarrow n - p = \Delta n \neq 0$

 Δn depends on donor & acceptor densities

 \Rightarrow n-type, p-type semiconductor

Donator- und Akzeptorniveaus (E_d, E_a)

IR absorption of Sb donors in Ge

