

John Bardeen**, William B. Shockley und Walter Brattain (v.I.n.r., 1956) erfanden den bipolaren Transistor 1947 in den Bell Laboratories Originalversuchsaufbau (Quelle: Lucent Technologies)

pnp-Transistorverstärkerschaltung

kleine Änderung i_{B} des Basisstroms I_{B}

 \rightarrow große Änderung i_c des Kollektorstroms I_c

(oder: kleines $u_{ein} \rightarrow \text{großes } U_{Rv}$)

npn-Transistor

EB in Durchlass-, BK in Sperrrichtung; Basis dünn gegen Diffusionslänge; über EB injizierte Ladungsträger diffundieren (transistor!) zu K; dort durch Sperrspannung abgesaugt³ n.b.: dicke Basis hat Strom 0 zur Folge

MOSFET

Metal-Oxide-Semiconductor Field Effect Transistor (1960) Julius E. Lilienfeld, U.S. Patent 1, 745, 175 (1930) Oskar Heil, British Patent 439, 457 (1935)

MOSFET Gate-Spannung U_{gate} > 0 Gate-Feld hält Elektronen im Kanal Dreieckspotenzial an Grenzfläche *p*-Halbleiter/Oxidschicht: 2DEG hier unterstes Subband besetzt

"Nebeneffekt":

Niedrigdimensionale Elektronensysteme

Quantentrog (quantum well)

nary compounds composed of various ratios of the corresponding binary materials

Molekularstrahlepitaxie (MBE)

Metal Organic Chemical Vapour Deposition (MOCVD)

Ausdehnung der Übergangszone ?

Strukturell: 1 Atomlage

Elektronisch:

Bandlücke1 AtomlageBandverbiegung λ_{D} (≈ 10 nm)

PHYSICAL REVIEW B 67, R121306 (2003)

(a) Relaxed geometry of a III-V (110) surface.

 d_0 : bond length in the bulk

- d₁: surface III-V bond length indicated
- d₂: III-V height difference at surface

(b) Constant-current, filled-state STM image of

InAs/GaAs superlattice

Semiconductor | Semiconductor ||

Fig. 12.22 a - c. Band schemes (one-electron energies plotted in real space) for a heterostructure formed from semiconductors I and II. a Semiconductors I and II are assumed to be isolated; χ_{I} and χ_{II} are the electron affinities, i.e., the energy between the vacuum energy $E_{\rm vac}$ and the lower conduction band edge E_{C} . **b** Semiconductors I and II are in contact, but not in thermal equilibrium because the Fermi levels $E_{\rm F}$ on the two sides have not equalized. $\Delta E_{\rm C}$ and $\Delta E_{\rm V}$ are the band discontinuities in the conduction and valence bands, respectively. c In thermal equilibrium, the Fermi energies $E_{\rm F}$ in I and II must be identical. Since the band discontinuities $\Delta E_{\rm C}$ and $\Delta E_{\rm V}$ are predetermined, band bending must occur in the two semiconductors

χ Elektronenaffinität

Leitungsbanddiskontinuität $\Delta E_c = \chi_1 - \chi_2$

(Obacht: Oberflächendipol, Defekt/Grenzflächenzustände)

Modulation doping

- I: wide gap heavily n-doped
- II: narrower gap weakly n-doped

band scheme of superlattice

Electrons confined against AlGaAs by E-field of dopants (Si⁺)

Electron mobility of 2DEGs in modulation doped GaAs/AlGaAs

Inventors of the modulation-doping processm, in 1978 around an early MBE machine at Bell Labs. From left: Willy Wiegmann, Art Gossard, Horst Störmer, Ray Dingle high T / lowest T: µ limited by scattering from phonons / defects

Progress made: Thousandfold increase of µ through modulation doping.

 $\mu = 2x10^7$ cm²/Vs corresponds to 1/5 mm ballistic electron motion between collisions

Superlattices

Fig. 12.27. Energy states of electrons confined in the rectangular potential wells (inset) of the conduction bands of a composition superlattice; the potential wells have a width d_z which also corresponds to their distance from one another. For the calculation, an electronic effective mass of $m^* = 0.1 m_0$ was assumed. The heavy lines in the shaded regions are the results for single potential wells with the corresponding widths d_z ; potential wells in a superlattice with sufficiently small separation lead to overlap of wavefunctions and therefore to a broadening into bands (shaded region). (After [12.7])

Light Absorption in Semiconductors

Luminescence

Photoluminescence

Cathodoluminescence; Minorityinjection, Impact Ionization

LED – Light Emitting Diode

diode at forward bias - recombination - radiation

GaAs	1.43 eV	870 nm	IR communication
GaP	2.26 eV	550 nm	green LED
$GaAs_xP_{1-x}$	variable		red LED
GaN	3.4 eV	405 nm	violet LED
In _x Ga _{1-x} N	variable		blue LED

Halbleiterlaser

Halbleiterlaser

Stimulierte Emission: Maximieren des Lichtfelds im aktiven Bereich

1. *n(x)*

2. Resonator

(spiegelnde Flächen)

