Problems for Physik der Materie III

Due by April 17, 2019

Series 1: Chemical bonding in solids

1.1 The Madelung constant

Calculate the analytical expression of the Madelung constant for a linear chain of alternating positive and negative ions. Briefly explain the result.

1.2 The Lennard-Jones potential

The interaction between two noble-gas atoms at a distance R from each other can be approximated by the Lennard-Jones potential:

$$
U(R)=4 \epsilon\left[\left(\frac{\sigma}{R}\right)^{12}-\left(\frac{\sigma}{R}\right)^{6}\right]
$$

1) Calculate the distance R_{o} and the energy $E\left(R_{o}\right)$ at equilibrium $(d U / d R=0)$, as well as the distance R^{*} where $U=0$.
2) Using U, determine the energy E_{a} per atom at equilibrium of an fcc-lattice, where

$$
E_{a}(R)=\frac{1}{2} \sum_{i \neq j} U\left(R_{i j}\right)
$$

To calculate E_{a} perform the summation using $R_{i j}=p_{i j} R(R=$ nearest neighbor distance) and the following expressions:

$$
\text { a) } \sum_{i \neq j}\left(\frac{1}{p_{i j}}\right)^{12}=12.13, \quad \text { b) } \sum_{i \neq j}\left(\frac{1}{p_{i j}}\right)^{6}=14.45
$$

What is the relation between σ and the equilibrium distance $R_{0}{ }^{\prime}$ for the fcc lattice? Compare the result with the one obtained in 1.
Discuss the value of 12.13 considering the atomic arrangement in an fcc lattice.

