Problems for *Physik der Materie III*

Due by April 17, 2019

Series 1: Chemical bonding in solids

1.1 The Madelung constant

Calculate the analytical expression of the Madelung constant for a linear chain of alternating positive and negative ions. Briefly explain the result.

1.2 The Lennard-Jones potential

The interaction between two noble-gas atoms at a distance R from each other can be approximated by the Lennard-Jones potential:

$$U(R) = 4\epsilon \left[\left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^6 \right]$$

- 1) Calculate the distance R_o and the energy $E(R_o)$ at equilibrium (dU/dR = 0), as well as the distance R^* where U = 0.
- 2) Using U, determine the energy E_a per atom at equilibrium of an fcc-lattice, where

$$E_a(R) = \frac{1}{2} \sum_{i \neq j} U(R_{ij}).$$

To calculate E_a perform the summation using $R_{ij} = p_{ij}R$ (R = nearest neighbor distance) and the following expressions:

a)
$$\sum_{i \neq j} \left(\frac{1}{p_{ij}}\right)^{12} = 12.13,$$
 b) $\sum_{i \neq j} \left(\frac{1}{p_{ij}}\right)^6 = 14.45$

What is the relation between σ and the equilibrium distance R_0' for the fcc lattice? Compare the result with the one obtained in 1.

Discuss the value of 12.13 considering the atomic arrangement in an fcc lattice.