Problems for Physik der Materie III

Due by May 8, 2019

Series 3: Reciprocal Lattice and Diffraction

3.1 Reciprocal lattice

Consider the primitive translation vectors \vec{a}_1 , \vec{a}_2 , and \vec{a}_3 of the body-centered cubic (bcc) lattice.

- (1) Show that the corresponding reciprocal lattice is one of the 14 Bravais lattices by determining the primitive translation vectors \vec{g}_1 , \vec{g}_2 , and \vec{g}_3 . Use orthogonal vectors $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ of unit length.
- (2) Sketch the primitive direct and reciprocal translation vectors, respectively, using cubic cells.

3.2 Miller indices and lattice planes

Consider a cubic unit cell with lattice constant a.

- 1) Sketch the (110), $(\bar{1}10)$, and (210) planes.
- 2) Determine reciprocal lattice vectors \vec{G}_{hkl} which are perpendicular to these planes. Use orthogonal vectors $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ of unit length.
- 3) Determine the spacing d_{hkl} of the plane (hkl).

3.3 Structure factor of fcc and NaCl lattices

The *structure factor* for diffraction from periodic crystals is defined as:

$$S_{\vec{G}} = \sum_{j} f_j \ e^{-i\vec{G}\vec{r}_j},$$

where \vec{r}_j is the position of the atoms in the basis and f_j is the *atomic form factor* which is determined by the internal structure of the atoms.

- (1) Construct the structure factor S_{hkl} for the fcc lattice of identical atoms with $f_j = f$ using a simple cubic cell with the basis (0,0,0), $(\frac{1}{2},\frac{1}{2},0)$, $(\frac{1}{2},0,\frac{1}{2})$, $(0,\frac{1}{2},\frac{1}{2})$. Express the result as a function of the atomic form factor f. Determine S_{hkl} for three cases: All indices h, k, and l being even, all indices being odd, and mixed even and odd indices.
- (2) Construct the structure factor S_{hkl} of NaCl, which consists of two fcc lattices shifted by $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. Refer the basis for both atoms to the simple cubic cell as in (1). Express the result as a function of the atomic form factors f_{Na+} and f_{Cl-} . Determine S_{hkl} for two cases: All indices h, k, and l being even and all indices being odd.
- (3) KCl has the sodium chloride (NaCl) structure. For X-ray diffraction, the atomic form factors are almost the same: $f_{K+} \approx f_{Cl-}$. Discuss the consequences for the intensities of (hkl) spots of the diffraction pattern.