Problems for Physik der Materie III

Due by June 26, 2019

Series 9: Fermi surface of a metal, Ewald construction, and intrinsic semiconductors

9.1 Fermi surface of gold

The periodicity observed in the de Haas-van Alphen effect is linked to an extremal cross-sectional area A_{k} of the Fermi surface, which is perpendicular to \boldsymbol{B}.
(a) Assuming that Au can be approximated by a three-dimensional free electron Fermi gas, estimate the extremal area A_{k} of the Fermi surface using an electron density of $n_{e l}^{A u}=5.90 \times 10^{22} \mathrm{~cm}^{-3}$.
(b) From the equality of centrifugal and Lorentz forces for free electrons in a magnetic field, derive a relation between the "radii" of the extremal orbits in real and reciprocal space. Using the result of (a), calculate the extremal area A_{r} in real space for Au in a field B of 1 T .
(c) Experiments on Au show an oscillation period of $\Delta(1 / B)=1.95 \times 10^{-5} \mathrm{~T}^{-1}$ along the [001]-direction and a superposition of two periods of $2.05 \times 10^{-5} \mathrm{~T}^{-1}$ and $6.0 \times 10^{-4} \mathrm{~T}^{-1}$ along the [111]-direction.
Calculate the corresponding extremal areas A_{k} in k-space and discuss the results in terms of the "real" Fermi surface shown in Fig. 1.

Figure 1: Fermi surface of gold

9.2 Ewald construction

X-rays with an energy of 7 keV are used to analyze a simple orthorhombic lattice ($a=0.6, b=0.8, c=0.4 \mathrm{~nm}$). The x-rays propagate in the (001) plane and also the detector scans in the (001) plane. The crystal is being rotated around the $\langle 001\rangle$ direction. Sketch the Ewald construction for this scenario. Determine the number and the scattering angles of the scattered beams using a computer and a programming language of your choice.

9.3 Conductivity of an intrinsic semiconductor

Consider an intrinsic Ge crystal at liquid nitrogen temperature ($T=77 \mathrm{~K}$). Assume an average electron carrier concentration $n=10^{12} \mathrm{~cm}^{-3}$ due to optical excitation across the band gap. At this temperature, the mobilities of electrons and holes are assumed to be the same with $\mu_{n}=\mu_{p}=\mu \approx 5 \times 10^{3} \mathrm{~cm}^{2} / \mathrm{Vs}$.
Determine the electrical conductivity σ and, for a cube of an edge length of 1 cm , the current I between two opposite faces at a voltage of 100 V .

