Halbleiter – einige "damals" offene Fragen

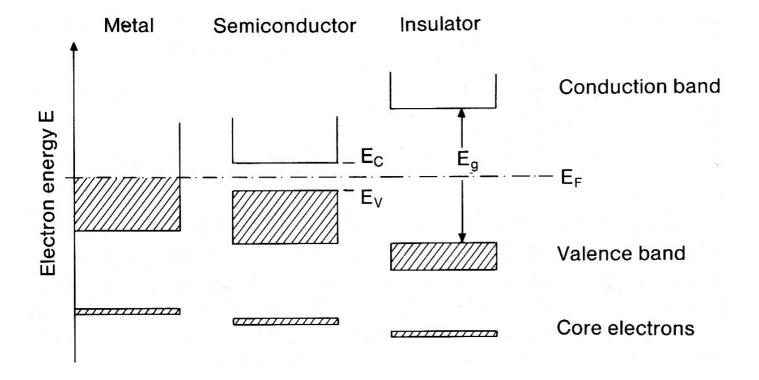
Leitfähigkeit steigt mit Temperatur

(Metalle: $\sigma = ne^2\tau/m$, n=const, τ bestimmt σ , fällt wg. e-ph-Streuung)

Ursache: $n \sim \exp(-E_A/k_BT)$

extreme Streuung experimenteller Daten

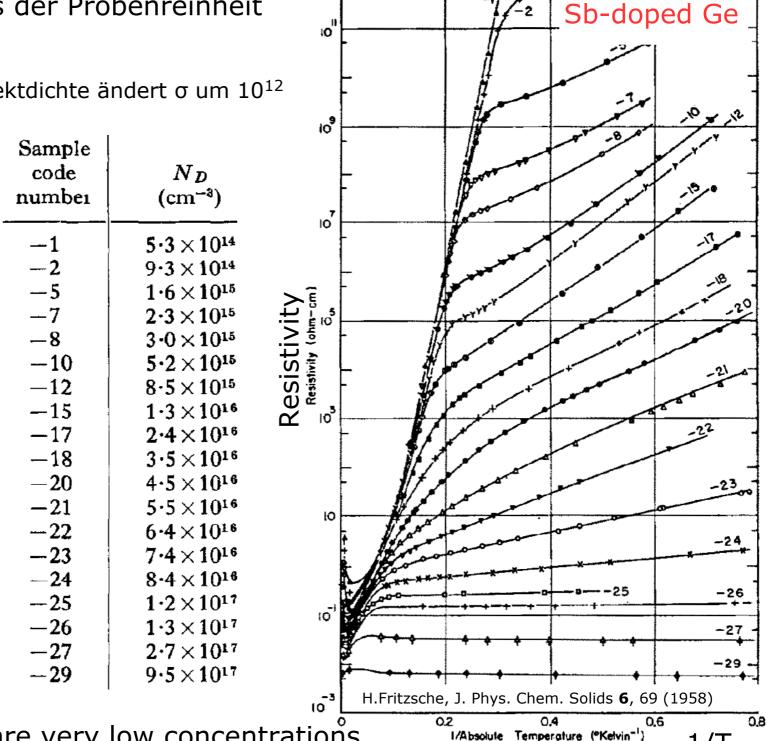
Photoleitung


Gleichrichtung an Halbleiterkontakten

ρ (Ωcm)

metals 10⁻⁶

semiconductors 10⁻³ ... 10⁹


insulators 10²²

Drastischer Einfluss der Probenreinheit

10⁻⁸ at% spürbar

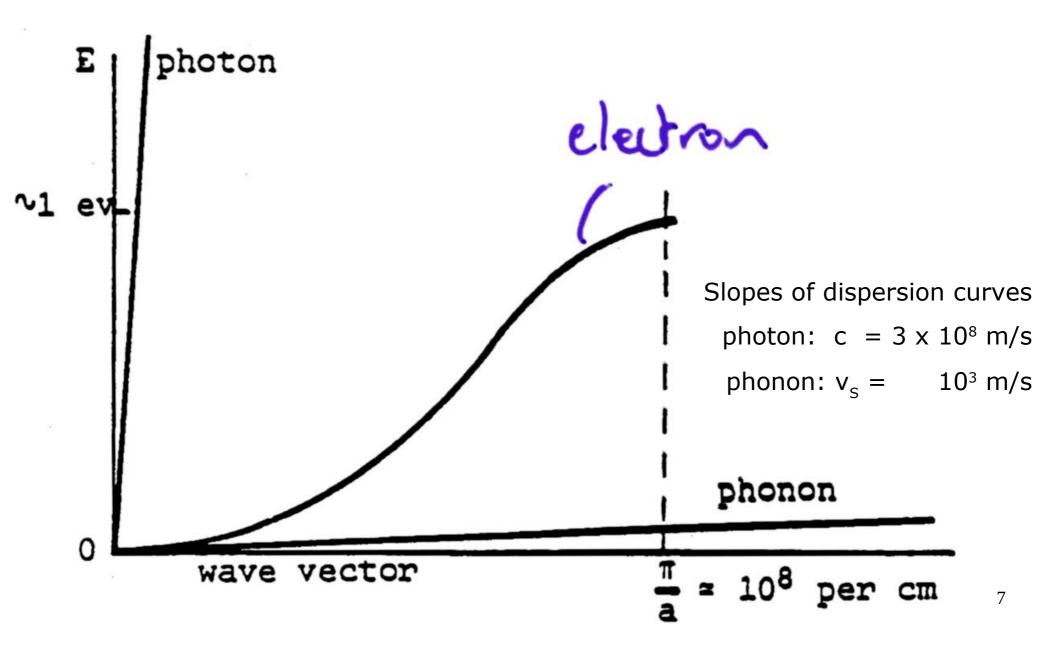
 10^3 -Änderung der Defektdichte ändert σ um 10^{12}

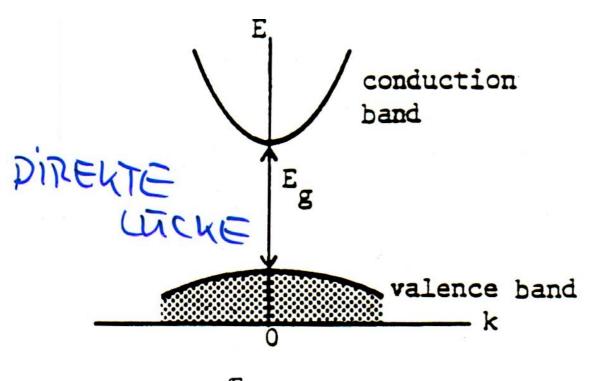
1/T

Note: these are very low concentrations

Elementemit halbleitenden Modifikationen

-gruppen							
	Ш	IV	V	VI	VII	VIII/O	Perioden
	1						
	10,811	12,01	14,007	15,999	18,998	20,179	K-Schale n=1
*	Bor	C Kohlen-	N 7 Stick-	O Sauer -	Fluor	Ne 10 Neon	2
		stoff	stoff	stoff			W 5-3-1-[
	2	2 2	2 3	2	2	2 6	K-Schale n=1 L-Schale 2
	26,982 Al 13 Alu- minium	Sili- cium	Phos- phor	Schwe- fel	35,453 Cl 17 Chlor	39,948 Ar 18	3
	2 6	2 6	2	2 6	2 6	2 6	K-Schale n=1 L-Schale 2
Ia IIa	2 0	22	2 6	24	12 5	2 6	M-Schale 3
546 65,38 Cu 2n 30 Zink	69,72 Ga 31 Gallium	72,59 Ge Ger- manium	74,922 AS 33	78,96 Se Selen	79,904 Br 35	Krypton	4
2 2 6 6 10 2 6 10	2 2 6 2 6 10	2 2 6 2 6 10	2 2 6 2 6 10	2 2 6 2 6 10	2 6 2 6 10 2 5 5	2 6 10 2 6 10	K-Schale n=1 L-Schale 2 M-Schale 3 N-Schale 4
7,87 112,40 Ag Cd (1ber Cadmium	114,82 49	50 Zinn	121,75 Sb 51	127,60 Te 52	126,90 J 53	131,30 Xe 54 Xenon	5
2 6 2 6 6 10 2 6 10 2 6 10	2 2 6 2 6 10 2 6 10	2 2 6 2 6 10 2 6 10	2 2 6 2 6 10 2 6 10	2 2 6 2 6 10 2 6 10	2 2 6 2 6 10 2 6 10	2 2 6 2 6 10 2 6 10	K-Schale n=1 L-Schale 2 M-Schale 3 N-Schale 4
3,97 200,59 Au Hg	204,37 Tl 81 Thal-	207,2 Pb	208,98 Bi	Po*	₈₅ At*	"Rn*	0-Schale 5
old silber	lium 2	2	Wismut 2	nium 2	Astat	Radon 2	K-Schale n=1

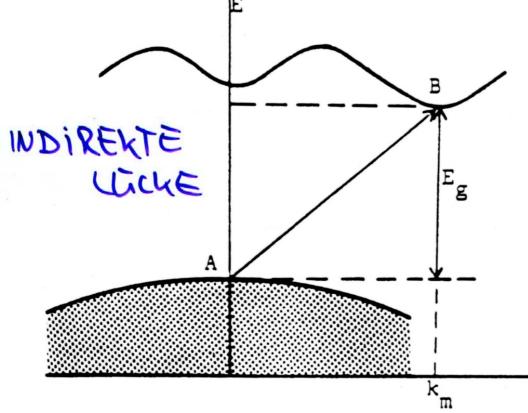

Verbindungshalbleiter


Grad der halbleitenden Verbindungen	Zahl der möglichen Kombina- tionen	real vorhandene Kombina- tionen	Beispiele	Beispiel für konkrete halb- leitende Verbindungen
binär	21	9	$A^{III}B^{V}$, $A^{II}B^{IV}$, $A^{I}B^{VII}$ $A^{II}_{2}B^{VI}_{3}$, $A^{II}_{3}B^{VII}_{3}$, $A^{III}_{2}B^{VI}$	GaAs InSb, CdS
ternär	70	10	$A^{I}B^{III}C_{2}^{VI}, A_{2}^{I}B^{IV}C_{3}^{VI} A^{II}B^{IV}C_{2}^{V}, A_{3}^{I}B^{V}C_{4}^{VI}$	$CuGaSe_2$
quaternär	105	37	${ m A_{3\it y}^{{\scriptscriptstyle { m I}}}}{ m B_{1/2-4\it y}^{{\scriptscriptstyle { m I}}}}{ m C}_{\it y}^{ m v}{ m D}_{1/2}^{{ m v}{\scriptscriptstyle { m I}}}$	${\rm CuGaSe_2/GaAs}$
5komponentig	84	42	$\mathbf{A^{\text{III}}B^{\text{V}}/A^{\text{I}}B^{\text{III}}C_{2}^{\text{VI}}/A_{2}^{\text{III}}B^{\text{IV}}C^{\text{VI}}}$ $m / n / 1 - m - n$	
6komponentig	35	21	$\mathbf{A}_{1-x-y-z-u-\imath}\mathbf{B}_{x}\mathbf{C}_{y}\mathbf{D}_{z}\mathbf{E}_{u}\mathbf{F}_{v}$	-
7komponentig	6	4	$\mathbf{A}_{1-x-y-z-u-v-w} \mathbf{B}_x \mathbf{C}_y \mathbf{D}_z \mathbf{E}_u \mathbf{F}_v \mathbf{G}_w$	

einige organische Halbleiter

		$\frac{\mu_n}{\text{cm}^2/\text{V}\cdot\text{s}}$	$\frac{\mu_p}{\text{cm}^2/\text{V}\cdot\text{s}}$
Benzen		1,5	0,2
Naphtalen		0,7	1,4
1,4 - Ditorom - naphtalen	Br	0,03	0,9
Anthracen		2,0	2,0
Phenazin	N	1,1	_
Phenothiazin	NH	5	0,1
Pyren			0,35
p - Terphenyl			3.10-2
Stilben	CH=CH-C	_	2 · 10 -3

Photons are an efficient source of energy but not of wave vector, while **phonons** are an efficient source of wave vector and not of energy


momenta:

$$\vec{k}' = \vec{k} + \vec{a}$$

q photon

Q phonon

$$E(\vec{k}') = E(\vec{k}) + \hbar\omega_{a}$$

$$\vec{k}' = \vec{k} + \vec{q} + \vec{Q} = \vec{k} + \vec{Q}$$

because we may set $\vec{q} =$

$$E(\vec{k}') = E(\vec{k}) + \hbar\omega_{q} + \hbar\Omega_{Q}$$

$$= E(\vec{k}) + \hbar\omega_{q} \text{ because } \hbar\Omega_{Q} = 0$$

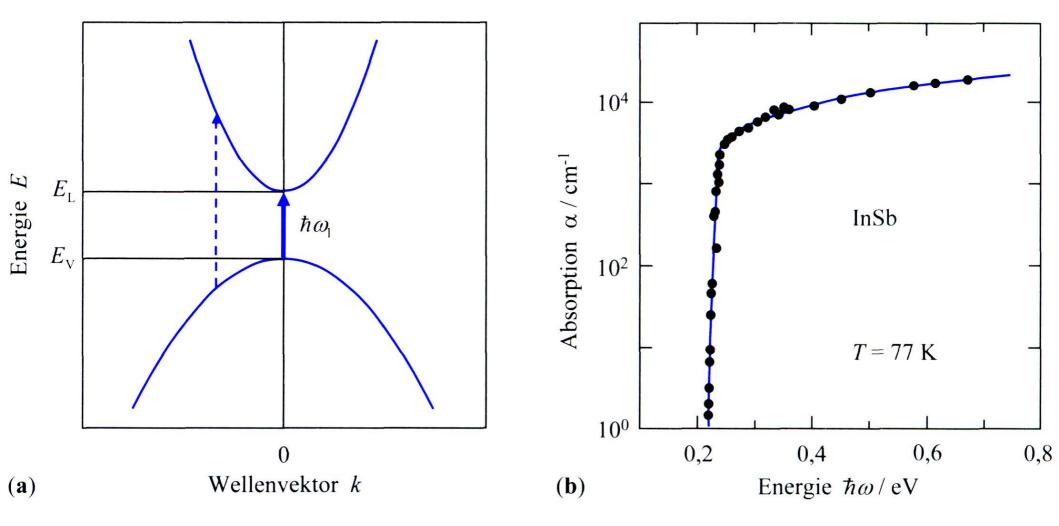


Bild 10.2 Hunklinger Optische Absorption bei direkter Bandlücke

(a) Schema des Absorptionsvorgangs

Dicker Pfeil: Übergang minimaler Energie. Gestrichelter Pfeil: höhere Photonenenergie

(b) Optischer Absorptionskoeffizient von InSb, *logarithmisch*, gegen Photonenenergie Nach G.W. Gobeli, H.Y. Fan, Phys. Rev. **119**, 613 (1960)

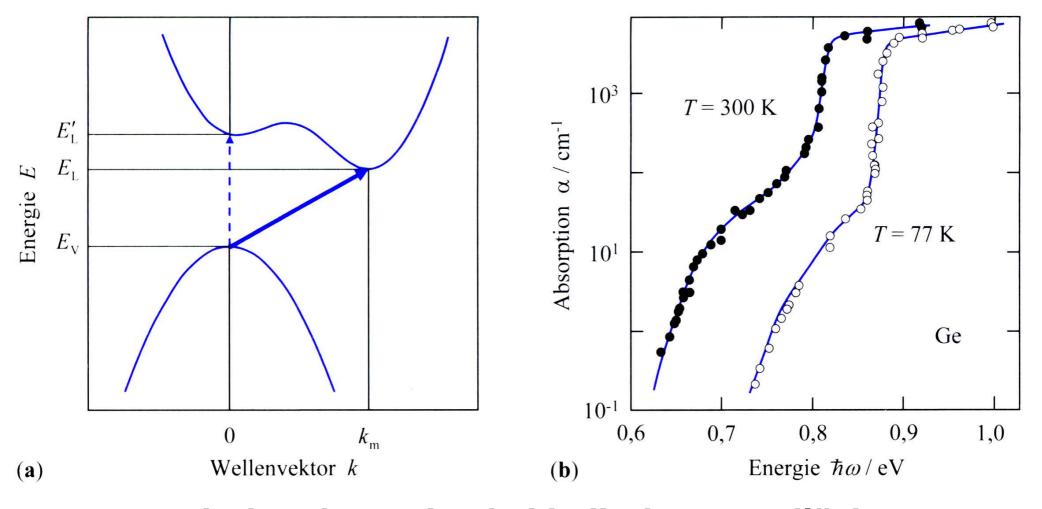


Bild 10.3 Hunklinger Optische Absorption bei indirekter Bandlücke

(a) Schema des Prozesses.

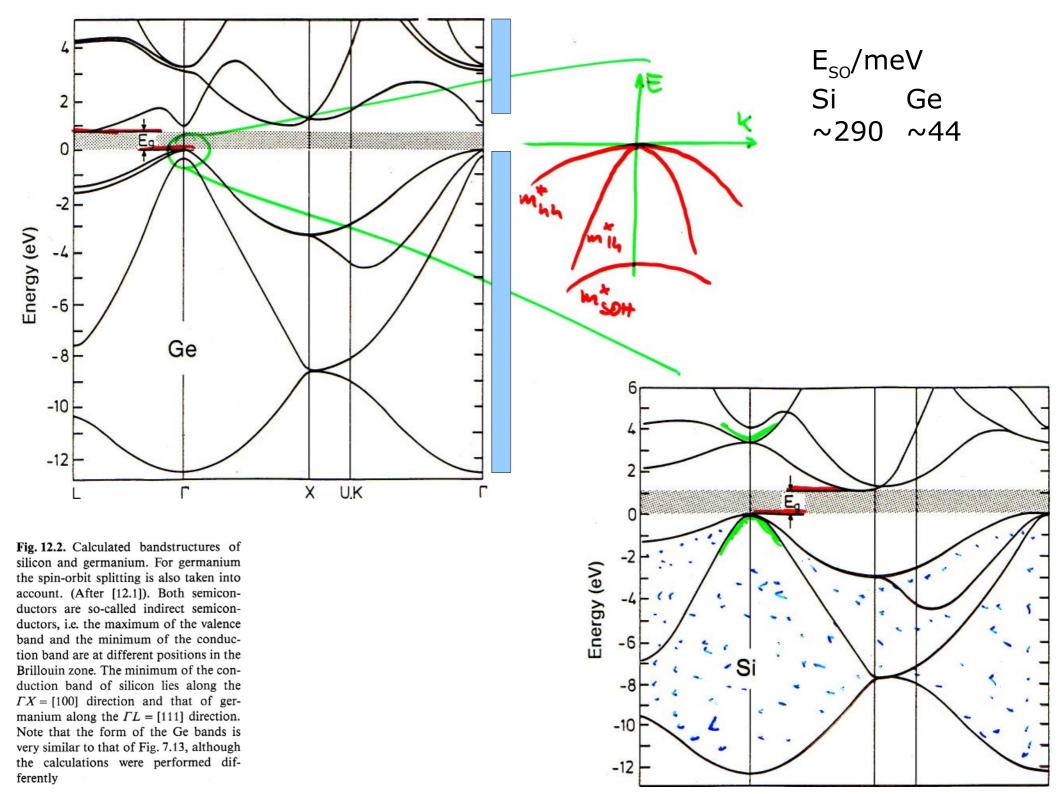
E₁.: Energie des Leitungsbandminimums am Γ-Punkt

Übergang minimaler Energie (durchgezogener Pfeil) erfordert das Mitwirken eines Phonons.

Der direkte Übergang kleinster Energie ist gestrichelt gezeichnet.

(b) Absorptionskoeffizient von Ge, logarithmisch, gegen Photonenenergie.

Tabelle 8.1: Energielücke zwischen Valenz- und Leitungsband.


(i = indirekte Lücke, d = direkte Lücke)

			$E_{ m g},{ m eV}$				E	g, eV
	Kristall	Lücke	0 K	300 K	Kristall	Lücke	0 K	300 K
	Diamant	i	5,4		SiC (hex)	i	3,0	-
T\ /	Si	i	1,17	1,11	Te	d	0,33	F
IV	Ge	i	0,744	0,66	$HgTe^{a}$	d	-0,30	
	$lpha { m Sn}$	d	0,00	0,00	PbS	d	0,286	0,34-0,37
	InSb	d	0,23	0,17	PbSe	i	0,165	0,27
	InAs	d	0,43	0,36	PbTe	i	0,190	0,29
	InP	d	1,42	1,27	CdS	d	2,582	2,42 II/VI
TTT ()	GaP	i	2,32	2,25	CdSe	d	1,840	1,74
	GaAs	d	1,52	1,43	CdTe	d	1,607	1,44
III/V	GaSb	d	0,81	0,68	SnTe	d	0,3	0,18
	AlSb	i	1,65	1,6	Cu_2O	d	2,172	

^a HgTe ist ein Halbmetall, die Bänder überlappen.

(1) Detektor / Emitter

(2)
$$E_G = E_G(T)$$
, warum?

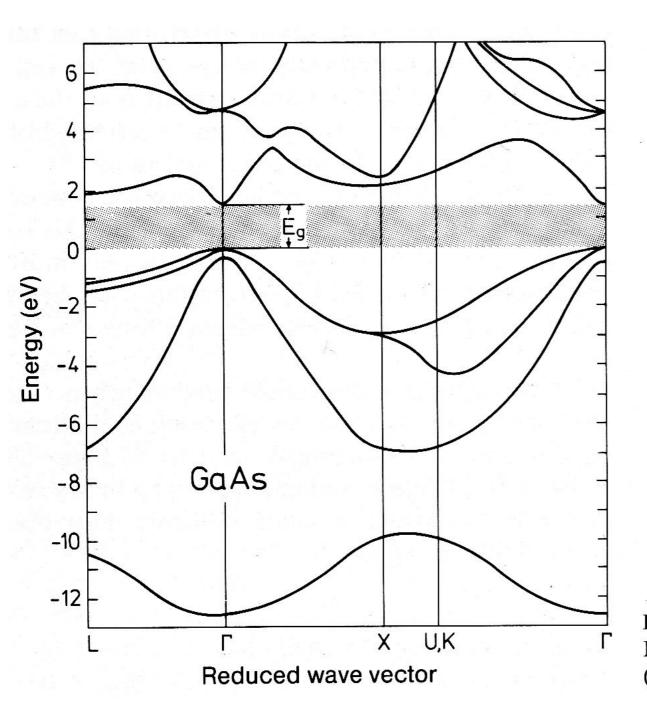
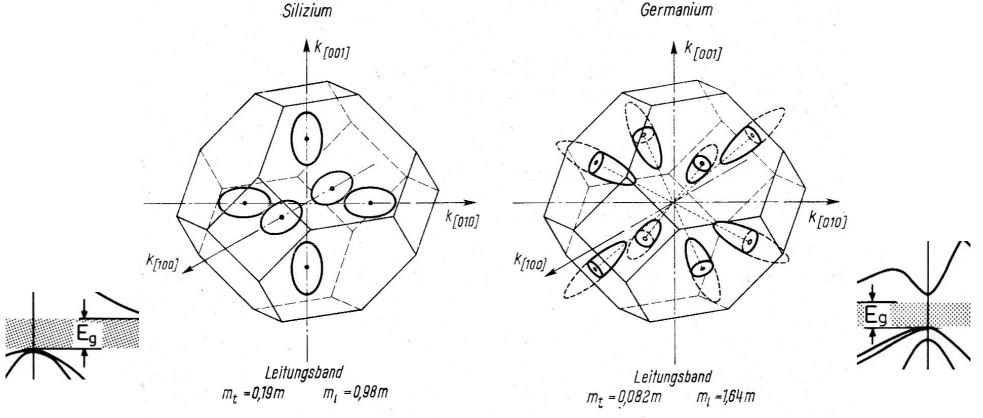
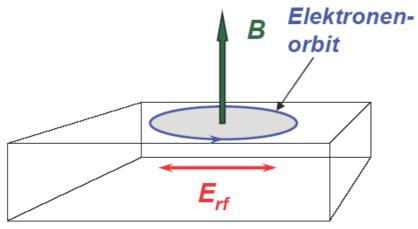


Fig. 12.4. Typical bandstructure of a III-V semiconductor, in this case GaAs. (After [12.1])

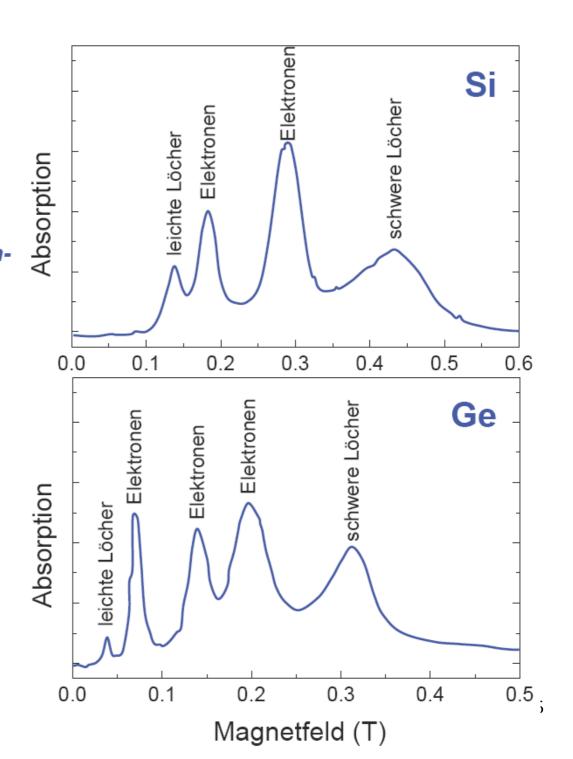
Effektive-Masse-Näherung

E(k) ist ziemlich komplex, außer an den Bandextrema,
 dort E(k) ≈ ak², d.h.: m*(k) ≈ const.
 Ladungsträgerdichten bestimmt durch Bandkanten
 parabolische Bandstruktur mit m* reicht für vieles! (Aber nicht alles; PSC)




Fig. 131: Flächen konstanter Energie für Leitungselektronen in Silizium und Germanium

Zyklotronresonanz


Hochfrequenzfeld E_{rf} (24 GHz) statisches Magnetfeld B

T = 4 K, reine Proben

G. Dresselhaus et al., Phys. Rev. 98, 368 (1955)

$$m_c = \left(\frac{\det m^*}{m_{zz}}\right)^{1/2}$$

Quantitatives ...

	3	E_{G} (eV)@RT	Art der Lücke	$\rm m_{_{n}}\!/m_{_{e}}$	$\rm m_p/\rm m_e$	n _i (cm-3)
Ge	16	0,67	i	1,6	0,04	$2,4 \times 10^{13}$
					0,28	
Si	11,9	1,1	İ	0,98	0,16	$1,5 \times 10^{10}$
					0,49	
GaAs	13,1	1,43	d	0,067	0,082	5×10^{7}

Konsequenzen? (optoelo, GHz)

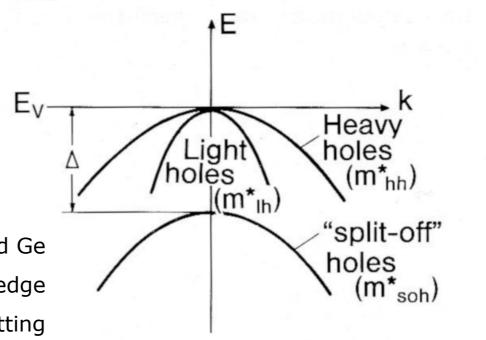
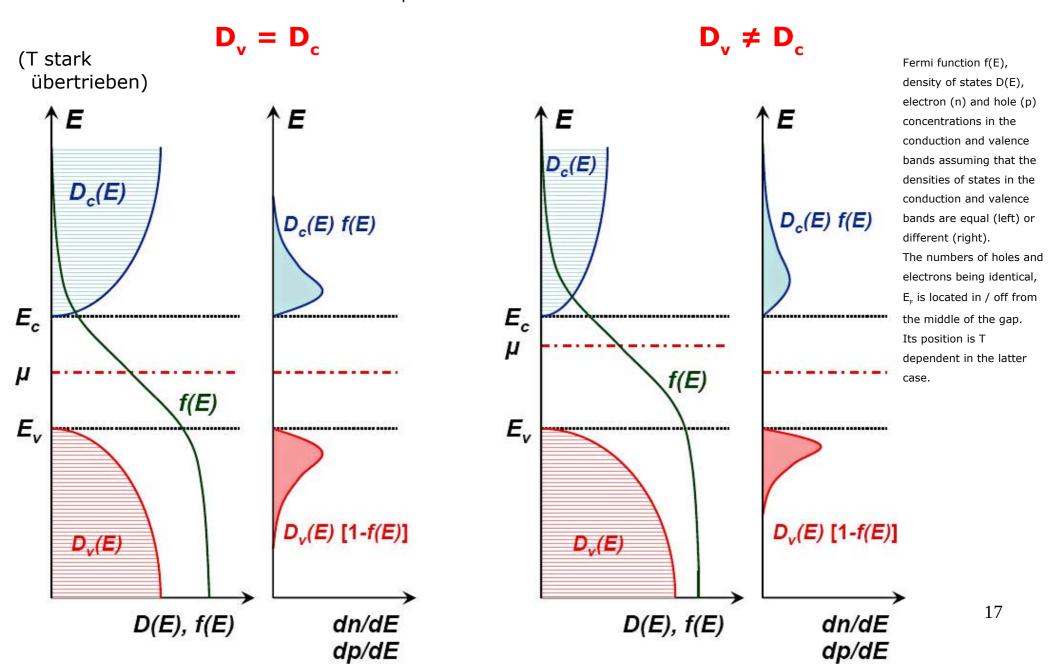



Fig. 12.3 Schematic bandstructure of Si and Ge near the valence band edge Δ : spin-orbit splitting

Intrinsischer Halbleiter - Ladungsträgerstatistik

Gegeben E_{G} , m_{p}^{*} , m_{n}^{*} , wo liegt μ (E_{F})?

Fraction of e⁻ in conduction band

$$x \approx \exp(-E_G/2k_BT)$$
; $k_BT \approx 25 \text{ meV} @ 300 \text{ K}$

$$E_{G}$$
 (eV) x

- 4 $10^{-35} \approx zero$
- 1 10⁻⁹ "few"
- 0.25 10⁻² "many"

Boltzmann approximation is excellent at RT for $E_G \approx 1 \text{ eV}$ (width of Fermi edge « E_G)

$$\sigma = |e| (n \mu_n + p \mu_p)$$

Intrinsic conductivity σ is extremely low at these conditions

Gibt es intrinsische Halbleiter?

Minimale Defektdichte ca. 10^{12} cm⁻³ (vgl. atomare Dichte) n_i bei 300 K: Ge $2,4\ 10^{12}$ cm⁻³ intrinsisch

Si 1,5 10¹⁰ cm⁻³ extrinsisch

Dotierung

z. B.: Gruppe IV Halbleiter + Spuren von 3- oder 5-wertige Fremdatome

(n.b.: andere Defekte, Selbstkompensation)

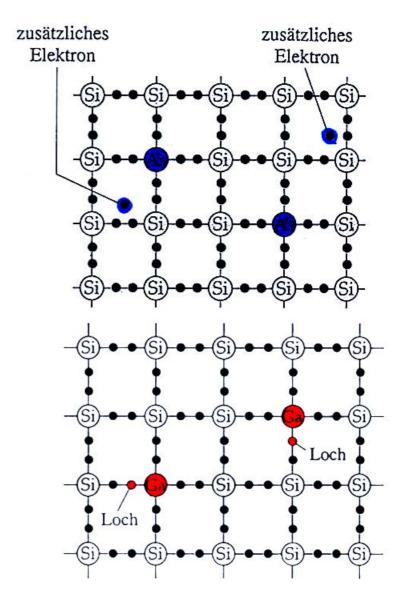
5-wertig: P, As, Sb s^2p^3

T=0: 5 Elektronen

T>0: ionisiert

Rumpf⁺ verliert e⁻

Donator


3-wertig: B, Ga, Al, In sp³

T=0: 3 Elektronen

T>0: ionisiert

Rumpf bindet h+ schwach

Akzeptor

a n-doped silicon

b p-doped silicon

Donator (a) bzw. Akzeptor (b) in einem Si-Gitter

Abb. 12.6 Ibach-Lüth

Substitutionelles, fünfwertiges Phosphoratom hat schwach gebundenes Elektron.

Dreiwertiges Bor nimmt zusätzliches auf und erzeugt so schwach gebundenes Loch.

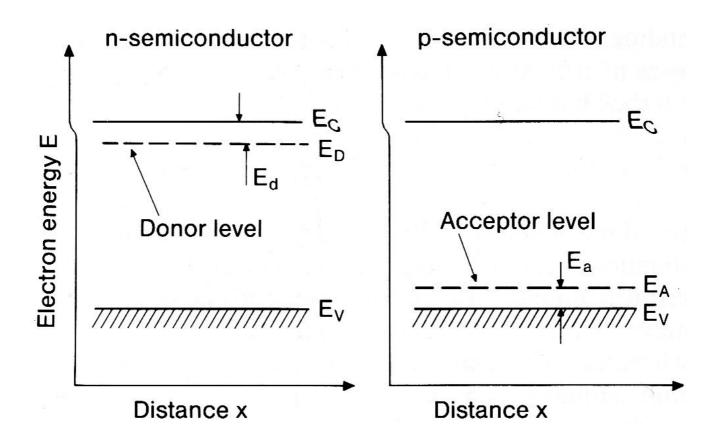
Wasserstoffmodell

$$E_n = -\frac{1}{(4\pi\epsilon_0\epsilon_R)^2} \frac{m^*e^4}{2\hbar^2} \frac{1}{n^2}$$

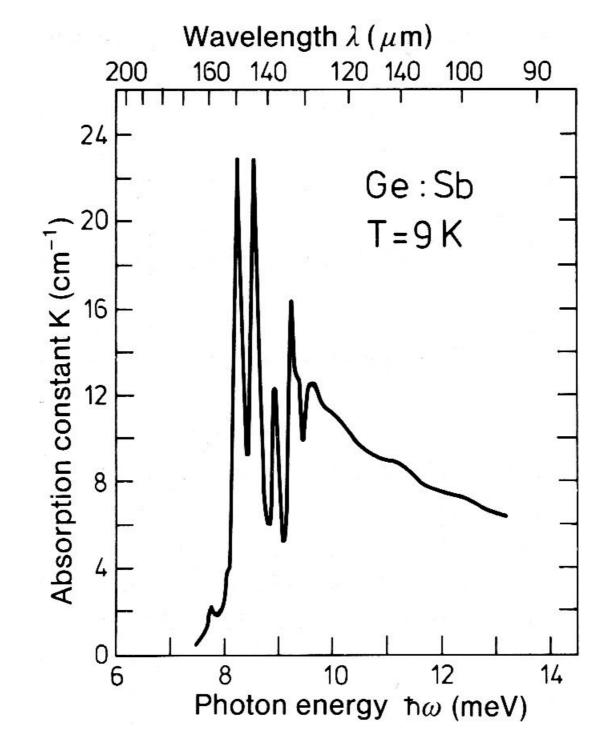
$$\epsilon_R \sim 10$$
, $m^* \sim 0.1 m_{e=22}$

Why ε_R ?

Donors provide extra electrons in CB


$$\Rightarrow n - p = \Delta n \neq 0$$

 Δn depends on donor & acceptor densities


⇒ n-type, p-type semiconductor

Donator- und Akzeptorniveaus (E_d, E_a)

(meV)	Donatoren			Akzeptoren			
	Р	As	Sb	В	Al	Ga	In
Si	45	49	39	45	57	65	16
Ge	12	12.7	9.6	10.4	10.2	10.8	11.2

IR absorption of Sb donors in Ge

