Hüllkurvendemodulator (oder H.detektor)

Demodulator für amplitudenmodulierte Signale (HF Trägers. + NF Nutzs.) Gleichrichter + Tiefpass

3

Kristalldetektor

Schottkykontakt

- z.B. PbS (Bleiglanz)
 - + Metallspitze

8 9 10 11 12 13 14

Röhrendiode

Halbleiterdiode

7-25

C 30

Beleuchtung: Glühfaden, Gasentladung, LED

Logikschaltungen: Relais, Röhren, Transistor, IC

Halbleiterbauelemente: Grenzflächen

HL-Vakuum, HL-Metall, HL-HL

Grenzfläche stört oben berechnetes Gleichgewicht von p, n

bewegliche Ladungen reagieren, Ionen sind aber ortsfest

 \Rightarrow Raumladungszonen

"1. Paradebeispiel": *pn*-Übergang

Ziel: $\rho(x)$, E(x), C(U)

Herstellungsverfahren: z. B. Diffusion, Implantation

"virtuelle" Herstellung:

Zusammenfügen je eines n- und p-Blocks Gradient der e- und h-Dichten

Diffusionsströme j_D

e: $n \rightarrow p$; h: $p \rightarrow n$

Ionen bleiben zurück

e & h rekombinieren

"steady state"

Raumladungszone

Verarmungszone

Raumladung \rightarrow E-Feld \rightarrow Feldstrom j_F

 $j_{_{\rm F}}$ ist entgegengesetzt zu $j_{_{\rm D}}$

 \rightarrow dynamisches Gleichgewicht mit j_D + j_F = 0

dann ist $E_{F}(x) = const.$

pn-Übergang

- all dopants ionized in bulk semiconductors
- N_i densities, j = A)cceptors, D)onors
- E_i ground state energies
- $E_{_F}$ "Fermi level" μ

 E_{c}^{p} , E_{v}^{p} , E_{c}^{n} , E_{v}^{n} conduction/valence band

- edges deep in p/n regions
- $V_{_{D}}$ diffusion voltage
- V(x) macropotential of p-n junction
- $\rho(x)$ space charge density (ionized A, D)
- n_i intrinsic electron concentration
- $n_{_{n/p}}$ electron concentrations on n/p side
- $p_{n/p}$ hole concentrations on n/p side

 E_{F} konstant \Rightarrow Bandverbiegung & Diffusionsspannung Schottkymodell

Fig. 12.16a-c. The Schottky model for the space-charge zone of a p-n junction (at x = 0). a Spatial variation of the space-charge density $\varrho(x)$ produced by the ionized acceptors (N_A) and donors (N_D) . The real form of the curve (*dashed*) is approximated by the rectangular (*full line*) form; b behavior of the electric field strength $E_x(x)$; c the potential V(x)in the region of the p-n junction

Schottkymodell

$$d^{(n)} = \frac{N_A}{N_D} d^{(p)} = \sqrt{2 \frac{\epsilon \epsilon_0}{e} (V_D - U) \frac{N_A}{N_D} \frac{1}{N_A + N_D}}$$

$$E(0) = 2 \frac{V_D - U}{d^{(n)} + d^{(p)}}$$

Resultat für $N_A \gg N_D$

Weitere Steigerung von N_A: Metall-Halbleiter-Kontakt Schottky-Diode

Fig. 12.20. Experimentally determined relationship between the space-charge capacitance and the reverse voltage (indicated by negative values) for the Si p-n diode discussed in Fig. 12.19. (From the advanced lab. course of the II. Physics Institute of the RWTH Aachen)

Rectification at a pn-Junction

Schematic current-voltage characteristics

Maximum reverse current:

Fig. 12.17 Ibach-Lüth

sum of electron and hole generation currents

Experimental I-V characteristics of a Si p-n junction

Fig. 12.19 Ibach-Lüth

Lab course II. Physikalisches Institut RWTH Aachen

Non-equilibrium situation: Quasi Fermi levels

Reverse bias

Forward bias

Fig. 12.18a, b. Forward- and reverse-biased p-n junctions (non-equilibrium state). a Band scheme in the presence of an external voltage +U or -U. The Fermi levels $E_{\rm F}^p$ and $E_{\rm F}^n$ in the p and n regions are shifted with respect to one another by eU. In the region of the p-njunction, the equilibrium Fermi level $(-\cdot -)$ splits into so-called quasi Fermi levels for electrons (\cdots) and for holes (---); **b** spatial variation of the concentration of holes p and electrons n in a biased p-n junction (full line) and without bias at thermal equilibrium (--). The lengths $-d_p$ and d_n give the range of the space charge zone in thermal equilibrium, i.e. without bias voltage. The carrier concentrations deep in the p and n regions are denoted p_p , n_p and p_n , n_n , respectively

Bias No bias

Ohne Drähte geht's nicht: Schottky-Kontakt

 $V(0) = V_{K} + V$ also $d(U=0) = ((2\epsilon\epsilon_{0})/(e N_{D}) V_{K})^{1/2}$

Schottkydiode

(im Schottkymodell)

Abweichungen vom Shockley-Modell

- Zuleitungswiderstände
- Oberflächenkanäle
- Erzeugung/Vernichtung

in Verarmungszone

- Tunneln
- starke Injektion
 - (i. e. Dichte von eindiffundierenden
 - e- im p-Bereich mit n vergleichbar)

Zener-Diode

Abb. 8.19 Zum Zener-Effekt

Bei hoher Sperrspannung:

Tunneln durch Verarmungszone.

⇒ rapider Anstieg des Sperrstroms

Esaki- oder Tunneldiode

erfunden 1957 bei Tokyo Tsushin Kogyo (heute Sony)

NDR: parallel zu Schwingkreis werden Verluste (R) kompensiert

Leo Esaki (* 1925) Nobelpreis Physik 1973

TUNNEL DIODES

Published by

Research Information Services

November 1959

FIGURE 2 CURRENT-VOLTAGE CURVE FIGURE 1

TUNNEL DIODE JUNCTION AT VARIOUS BIAS CONDITIONS

(The numbered diagrams below correspond to the numbered points on the current-voltage curve, Figure 2.)

Electrons at same level on both sides of junction. No netcurrent.

Electrons on right raised still farther. Some are opposite "forbidden band gap," some opposite empty states. Current decreases.

Electrons all are opposite forbidden gap. Very small current. Electrons (5) Empty States Electrons

Electrons raised until they spill over barrier. Current increases.

Electrons on right side are raised until they are opposite empty states on left side. Strong current flows from right to left.

Solarzelle

viel Licht: Spannung U_{oc} (open circuit)

Rückseitenkontakt

Material	Struktur	Wirkungsgrad (%)	
		Labor	Produktion
Si	amorph	13	5-7
	polykristallin	18	13 - 15
	einkristallin	24	14 - 17
GaAs	Einschicht	25	15 – 22
	Mehrschicht	32	20 - 28

Preis, Giftigkeit

Details zu Widerstand des Materials, Verlust bei $\rm E_{\rm photon}$ größer als $\rm E_{\rm g}$

Abb. 7.22

Energiezustände W_n , Zustandsdichte g(W) und Beweglichkeit b für einen Isolierstoff