

John Bardeen**, William B. Shockley und Walter Brattain (v.l.n.r., 1956) erfanden den bipolaren Transistor 1947 in den Bell Laboratories

Originalversuchsaufbau (Quelle: Lucent Technologies)

1

pnp-Transistorverstärkerschaltung

kleine Änderung i_{B} des Basisstroms I_{B}

 $_{\rm c}$ große Änderung i_c des Kollektorstroms I_c

(oder: kleines $u_{ein} \rightarrow \text{großes } U_{Rv}$)

nnn-Transistor

EB in Durchlass-, BK in Sperrrichtung; Basis dünn gegen Diffusionslänge; über EB injizierte Ladungsträger diffundieren (transistor!) zu K; dort durch Sperrspannung abgesaugt³ n.b.: dicke Basis hat Strom 0 zur Folge

MOSFET

Metal-Oxide-Semiconductor Field Effect Transistor (1960) Julius E. Lilienfeld, U.S. Patent 1, 745, 175 (1930) Oskar Heil, British Patent 439, 457 (1935)

MOSFET Gate-Spannung Ug > 0 Gate-Feld hält Elektronen im Kanal Dreieckspotenzial an Grenzfläche p-Halbleiter/Oxidschicht: 2DEG ⁴ hier unterstes Subband besetzt "Nebeneffekt":

Niedrigdimensionale Elektronensysteme

Quantentrog (quantum well)

Andere Realisierung: Heterostrukturen 2- oder Mehrlagensysteme Binäre Verbindungen: GaAs Ternäre Verbindungen: Al_xGa_{1-x}As $Ga_{x}In_{1-x}As_{y}P_{1-y}$ Quaternäre Verbindungen: 3.0 ZnSe 0.5 AIP CdS ALAS GaP Wavelength (µm) ALSb CdTe GaAs InP Si Ge GaSb 2 InAs InSb 5 10 HgTe Fig. 12.21. Band gap E_s of some important elemental and binary compound 6.0 semiconductors plotted against the lattice 5.8 6.2 6.4 6.6 5.4 5.6 parameter at 300 K. The right-hand scale gives the light wavelength λ corresponding to the band gap energy. The connecting lines give the energy gaps of the ternary compounds composed of various Lattice constants (Å)

ratios of the corresponding binary materials

Molekularstrahlepitaxie (MBE)

Metal Organic Chemical Vapour Deposition (MOCVD)

Ausdehnung der Übergangszone ?

Strukturell: 1 Atomlage

Elektronisch:

Bandlücke1 AtomlageBandverbiegung λ_{D} (≈ 10 nm)

PHYSICAL REVIEW B 67, R121306 (2003)

(a) Relaxed geometry of a III-V (110) surface.

 d_0 : bond length in the bulk

- d₁: surface III-V bond length indicated
- d₂: III-V height difference at surface

(b) Constant-current, filled-state STM image of InAs/GaAs superlattice

Semiconductor | Semiconductor ||

Fig. 12.22a-c. Band schemes (one-electron energies plotted in real space) for a heterostructure formed from semiconductors I and II. a Semiconductors I and II are assumed to be isolated; χ_{I} and χ_{II} are the electron affinities, i.e., the energy between the vacuum energy $E_{\rm vac}$ and the lower conduction band edge $E_{\rm C}$. b Semiconductors I and II are in contact, but not in thermal equilibrium because the Fermi levels $E_{\rm F}$ on the two sides have not equalized. $\Delta E_{\rm C}$ and $\Delta E_{\rm V}$ are the band discontinuities in the conduction and valence bands, respectively. c In thermal equilibrium, the Fermi energies $E_{\rm F}$ in I and II must be identical. Since the band discontinuities $\Delta E_{\rm C}$ and $\Delta E_{\rm V}$ are predetermined, band bending must occur in the two semiconductors

χ Elektronenaffinität

Leitungsbanddiskontinuität $\Delta E_c = \chi_1 - \chi_2$

(Obacht: Oberflächendipol, Defekt/Grenzflächenzustände)

10

Modulation doping

Electrons confined against AlGaAs by E-field of dopants (Si⁺)

Electron mobility of 2DEGs in modulation doped GaAs/AlGaAs

Inventors of the modulation-doping processm, in 1978 around an early MBE machine at Bell Labs. From left: Willy Wiegmann, Art Gossard, Horst Störmer, Ray Dingle high T / lowest T: µ limited by scattering from phonons / defects

Progress made: Thousandfold increase of µ through modulation doping.

 μ = 2x10⁷ cm²/Vs corresponds to 1/5 mm ballistic electron motion between collisions

Superlattices

Fig. 12.27. Energy states of electrons confined in the rectangular potential wells (inset) of the conduction bands of a composition superlattice; the potential wells have a width d_z which also corresponds to their distance from one another. For the calculation, an electronic effective mass of $m^* = 0.1 m_0$ was assumed. The heavy lines in the shaded regions are the results for single potential wells with the corresponding widths d_z ; potential wells in a superlattice with sufficiently small separation lead to overlap of wavefunctions and therefore to a broadening into bands (shaded region). (After [12.7])

Light Absorption in Semiconductors

Luminescence

Photoluminescence

Cathodoluminescence; Minorityinjection, Impact Ionization

LED – Light Emitting Diode

diode at forward bias - recombination - radiation

GaAs	1.43 eV	870 nm	IR communication
GaP	2.26 eV	550 nm	green LED
$GaAs_xP_{1-x}$	variable		red LED
GaN	3.4 eV	405 nm	violet LED
In _x Ga _{1-x} N	variable		blue LED

Halbleiterlaser

Halbleiterlaser

POPULARISING your science may lead to a terminal loss of serious reputation. So why not go for broke--as have the authors of "Britney's Guide to Semiconductor Physics"? As you can read at http://britneyspears.ac/lasers.htm, "It is a little known fact that Ms Spears is an expert in semiconductor physics. Not content with just singing, in the following pages, she will guide you in the fundamentals of the vital laser components that have made it possible to hear her super music in a digital format."

Halleffekt an 2D Elektronengasen

Ganzahliger Quanten-Hall-Effekt

2DEG in an external magnetic field

Entartung des untersten Landauniveaus

alle Spins parallel

 n_{μ} Zustände pro Fläche im Intervall $\hbar \omega_{c}$

$$n_{l} = \frac{g_{l}}{L^{2}} = \hbar \omega_{c} D(B=0) = \hbar \omega_{c} \frac{m^{*}}{2\pi\hbar^{2}} = \hbar \frac{eB}{m^{*}} \frac{m^{*}}{2\pi\hbar^{2}} = \frac{e}{h}B$$

$$R_{H} = \frac{B}{ne} = \frac{B}{in_{l}e}$$
i Zahl der Landauniveaux
$$\Rightarrow R_{H} = \frac{h}{e^{2}} \frac{1}{i} = \frac{1}{i} R_{K}$$

$$R_{K} = \frac{h}{e^{2}} = 25812,807572(95)\Omega$$

wenig später: Fraktionaler Quanten-Hall-Effekt

26

Nobel Lecture: The fractional quantum Hall effect Horst L. Störmer, Rev. Mod. Phys. **71**, 875 (1999)

T. Kovacs, T. Duff, Bell Labs

Nobelpreis 1998 Störmer, Tsui, Laughlin

Quantized conductance of point contacts in a 2DEG

B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988)

Ballistic point contacts, defined in the 2DEG of a GaAs-AlGaAs heterostructure

Conductance changes are quantized

FIG. 1. Point-contact resistance as a function of gate voltage at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate voltage, obtained from the data of Fig. 1 after subtraction of the lead resistance. The conductance shows plateaus at multiples of $e^{2}/\pi\hbar$.

Landauerformel

$$G = \frac{e^2}{\pi\hbar} \sum_{n,m=1}^{N_c} |t_{nm}|^2$$

B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988)

Atomic-scale engineering of Cu electrodes

Schull, Frederiksen, Arnau, Sánchez-Portal, Berndt, Nature Nanotechnol. 6, 23 (2011)

From A. Heinrich, Closing in on molecular junctions Nature Nanotechnol. (news & views) **6**, 7 (2011)

State-of-the-art

e-beam lithography

(hardly used) 22-nm-wide contact

