Wiederholung vom 25.06.2019

Ebene Wellen als Lösungen der Wellengleichungen

$$\vec{B} = \frac{1}{\omega} \vec{k} \times \vec{E}, \vec{E} = -\frac{c^2}{\omega} \vec{k} \times \vec{B}$$

e.-m. Wellen als Transversalwellen

Polarisation e.-m. Wellen

lineare, elliptische, zirkulare Polarisation

Energiedichte, Energiestromdichte (Intensität) und Poyntingvektor

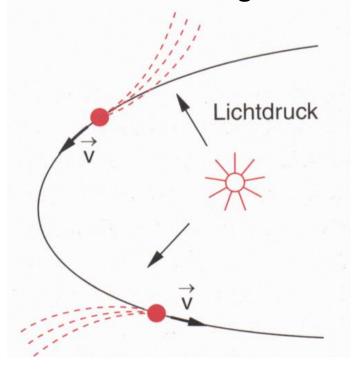
$$\vec{S} = \varepsilon_0 c^2 (\vec{E} \times \vec{B})$$

Themen heute

Impuls e.-m. Wellen

Frequenzbereiche e.-m. Welle

e.-m. Wellen in Materie: **Propagation** und **Absorption**

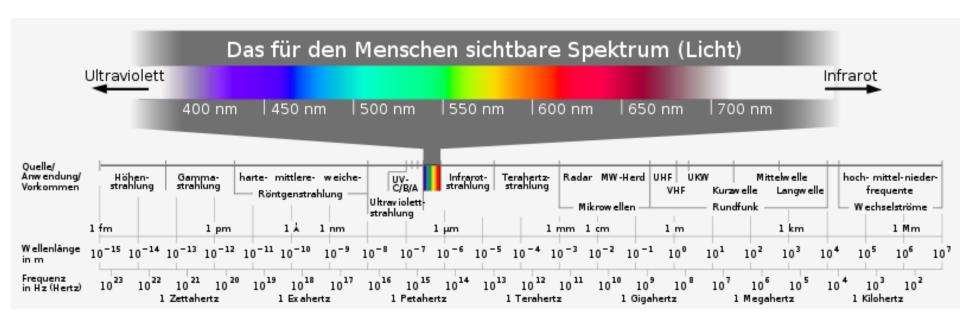

Brechung und Reflexion

Lichtstreuung

Energiedichte und Impuls elektromagnetischer Wellen

Impulsdichte:
$$\vec{\pi} = \frac{1}{c^2} \vec{S} = \varepsilon_0 (\vec{E} \times \vec{B})$$

⇒ Effekt des Strahlungsdruckes, z.B.:



Kometenschweif

Licht als elektromagnetische Welle

Elektromagnetisches Frequenzspektrum

Spektrum elektromagnetischer Wellen; vergrößert dargestellt ist der Bereich des sichtbaren Spektrums;

Wellenlänge
$$\lambda$$
: $\lambda = \frac{2\pi}{|\vec{k}|}$ Frequenz f : $f = \frac{c}{\lambda}$ \Rightarrow $f \cdot \lambda = c$

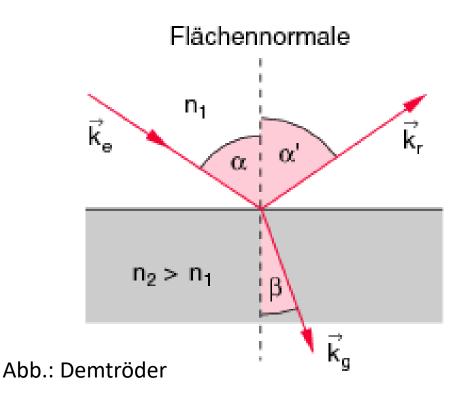
Absorption und Dispersion

komplexwertiger Brechungsindex $\tilde{n} = n - ik$ $\tilde{n} = \tilde{n}(\omega)$

 $n \Rightarrow \text{Änderung der Ausbreitungsgeschwindigkeit}$

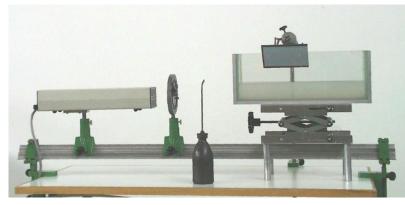
 $\kappa \Rightarrow D \ddot{a}mpfung der Feldamplitude$

Beersches Absorptionsgesetz: $I = I_0 e^{-\alpha z}$


 $\alpha=2k_0\kappa$Absorptionskoeffizient, $\lceil\alpha\rceil=m^{-1}$

2. Optik - 2.2 Elektromagnetische Wellen in Materie

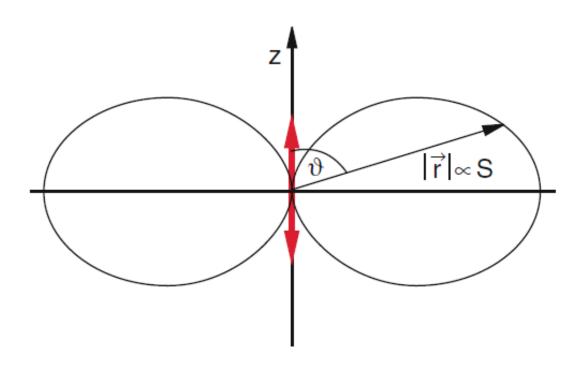
Brechung und Reflexion


Stetigkeitbedingungen für elektrische und magnetische Felder an Grenzflächen (Kap. 4.8) ⇒

Reflexionsgesetz Snelliussches Brechungsgesetz $sin\alpha = sin\alpha'$ $n_1 sin\alpha = n_2 sin\beta$

Lichtstreuung

Rayleigh – Streuung ($\lambda \gg a$) dipolare Abstrahlcharakteristik abgestrahlte Leistung: $P \propto a^2 \omega^4 sin^2 \vartheta$



Demonstration Rayleigh-Streuung

Mie – Streuung ($\lambda \approx a$)

Abstrahlcharakteristik ⇔ Größe **und** Form des Streuers Resonanzeigenschaften ⇔ Größe **und** Form des Streuers

Streuung an großen Teilchen($\lambda \ll a$) Streuprozesse beschreibbar im Rahmen der geometrischen Optik \Rightarrow Reflexion, Brechung $(n(\lambda)!)$

Räumliche Verteilung der abgestrahlten Energiestromdichte S eines schwingenden Dipols

zur Mie-Streuung

Beispiel: Mie-Streuung an Edelmetall-Teilchen - Lycurgus-Becher (4.Jhd. n. Chr., Rom)