# Wiederholung vom 25.04.2019

- Dielektrika im elektrischen Feld
  - Polarisationsladungen  $\longrightarrow$  Polarisation  $\overrightarrow{P}$
  - Dielektrizitätszahl  $\varepsilon_r$
  - Suszeptibilität  $\varepsilon_r = 1 + \chi$

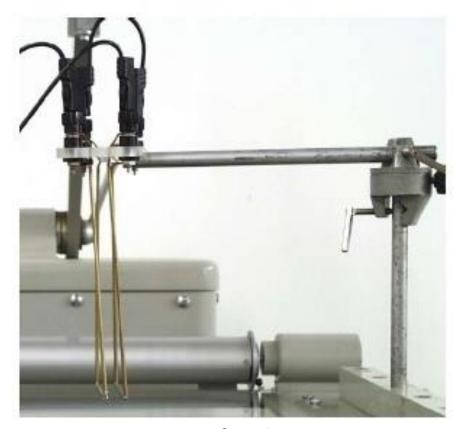
Kondensator mit Dielektrikum:  $C \longrightarrow \varepsilon_r C$ 

- elektrische **Verschiebungsdichte**  $\overrightarrow{D}$ 
  - 1. Maxwellgleichung in Materie:  $\operatorname{div} \vec{D} = \rho_{(frei)}$
- Energiedichte im elektrischen Feld in Materie  $w = \frac{1}{2} \vec{E} \vec{D}$

### Themen heute

Der elektrische Strom

**Stromdichte** und Stromstärke


elektrischer (ohmscher) Widerstand R

**Ohmsches Gesetz** 

elektrische Leistung

Bsp.: Aufladung/Entladung eines Kondensators

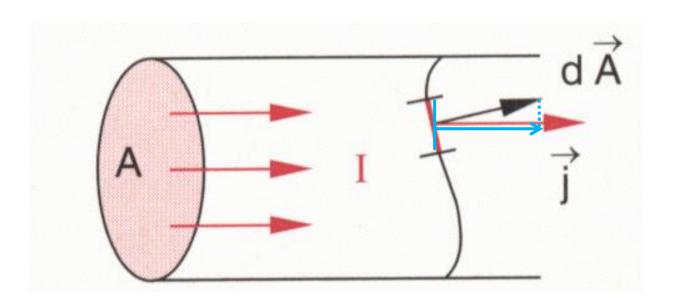
# Elektrische Stromstärke und Stromtransport

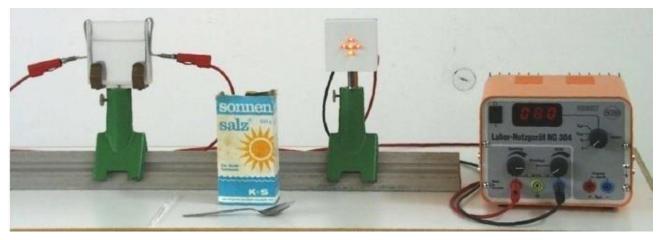


Demonstration: Kraftwirkung elektrischer Ströme

elektrische **Stromstärke** *I* 

$$I = \frac{dQ}{dt}$$
 ;  $[I] = 1$ Ampere = 1A


**1 Ampere** ist die Stärke eines zeitlich unveränderlichen elektrischen Stromes, der, durch zwei im Vakuum parallel im Abstand 1 Meter voneinander angeordneten, geradlinigen, unendlich langen Leitern von vernachlässigbar kleinem, kreisförmigen Querschnitt fließend, zwischen diesen Leitern pro Meter Leiterlänge die Kraft  $2 \times 10^{-7}$  Newton hervorrufen würde.


# Die elektrische **Stromdichte** $\vec{j}$

Stromdichte 
$$\vec{j} = n \cdot q \cdot \langle \vec{v} \rangle$$

n....freie Ladungsträgerdichte  $\langle \vec{v} \rangle$ ....mittlere Geschwindigkeit

Stromstärke 
$$I = \frac{dQ}{dt} = \int_A \vec{j} \cdot d\vec{A}$$





Demonstration: Strom durch freie Ladungsträger

### Arten von Ladungsträgern - Leitungsmechanismen

- Elektronenleitung (Metalle)
- Ionenleitung (ionische Lösungen)
- gleichzeitige Elektronen- und Ionenleitung (Plasmen)
- Elektronen- und Löcherleitung (Halbleiter)

### **Elektrischer Widerstand**

#### **Ohmsches Gesetz**

$$\vec{J} = \sigma_{el} \cdot \vec{E} = \frac{1}{\rho_{el}} \cdot \vec{E}$$

mit  $\sigma_{el}$ ...elektrische **Leitfähigkeit**;

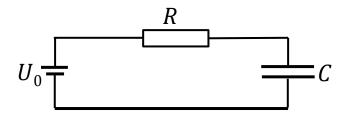
$$[\sigma_{el}] = 1AV^{-1}m^{-1} = 1\Omega^{-1}m^{-1}$$

 $ho_{el}$ ...spezifischer Widerstand;

$$[\rho_{el}] = 1\Omega m$$


$$U = R \cdot I$$

mit
$$R=rac{L\cdot 
ho_{el}}{A}$$
 ...Ohmscher **Widerstand**;  $[R]=10 \mathrm{hm}=1\Omega$ 


| Material | $\varrho_{\rm s}/10^{-6}\Omega{\rm m}$ | Material                           | $\varrho_{\rm s}/\Omega$ m |
|----------|----------------------------------------|------------------------------------|----------------------------|
| Silber   | 0,016                                  | Graphit                            | $1,4 \cdot 10^{-5}$        |
| Kupfer   | 0,017                                  | Wasser mit                         |                            |
| Gold     | 0,027                                  | 10% H <sub>2</sub> SO <sub>4</sub> | $2.5 \cdot 10^2$           |
| Zink     | 0,059                                  | H <sub>2</sub> O+10%               | 1555                       |
| Eisen    | $\approx 0.1$                          | NaCl                               | $8 \cdot 10^2$             |
| Blei     | 0,21                                   | Teflon                             | $1 \cdot 10^{17}$          |
| Queck-   |                                        | Silikatglas                        | $5 \cdot 10^{15}$          |
| silber   | 0,96                                   | Porzellan                          | $3 \cdot 10^{16}$          |
| Messing  | $\approx 0.08$                         | Hartgummi                          | $\approx 10^{20}$          |

spezifischer Widerstand  $ho_{el}$  einiger Materialien

# Beispiel Ohmsches Gesetz Aufladen eines Kondensators $\mathcal C$ über einen Widerstand $\mathcal R$



Kondensator – Aufladung und Entladen



Aufladen des Kondensators ( $I(t = 0) = I_0$ )

$$I(t) = I_0 \cdot e^{-t/\tau} \min \tau = RC$$

$$U_C(t) = U_0 \left( 1 - e^{-t/\tau} \right)$$

# elektrische Leistung

Ein Strom I liefert bei zeitlich konstanter Spannung U die elektrische Leistung P

$$P = U \cdot I$$

Die Leistung P die durch einen ohmschen Widerstand R verbraucht wird ergibt sich zu

$$P = U_R \cdot I = I^2 \cdot R$$

# Wiederholung vom 02.05.2019

# - Stromdichte $\vec{J}$ Stromstärke $I = \frac{dQ}{dt} = \int_A \vec{J} \cdot d\vec{A}$

Ohmscher Widerstand und Ohmsches Gesetz

$$\vec{j} = \sigma_{el} \cdot \vec{E}, \quad U = RI$$

- Elektrische Leistung P = UI
- Aufladen einer Kapazität über einen Widerstand charakteristische Zeit:  $\tau = RC$

### Themen heute

Passive Bauelemente und Netzwerke

Induktivität L

Kirchhoffsche Regeln – Knoten und Maschenregel

Bsp.: Parallelschaltung von Widerständen

Wheatstone-Brücke

Gleichspannung und Wechselspannung

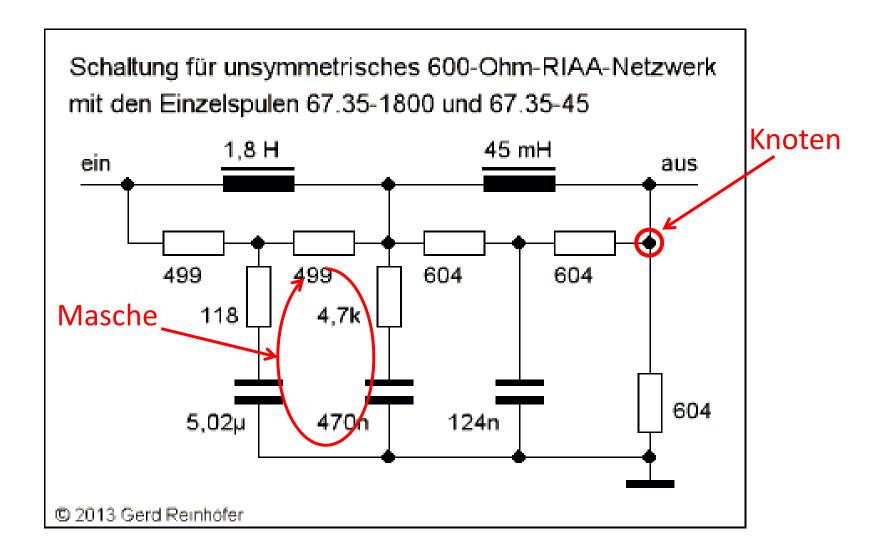
Wechselspannungskreise mit ohmscher, kapazitiver und induktiver Last

### **Passive Bauelemente**

elektronische Bauelemente - ohne Verstärkerwirkung

- ohne Steuerungsfunktion

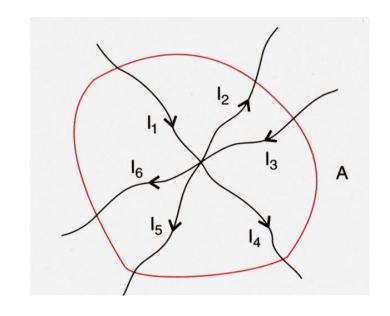
#### HIER:


Kapazität 
$$U_C = \frac{1}{C} \cdot Q$$

Widerstand 
$$U_R = R \cdot I = R \cdot \frac{dQ}{dt}$$

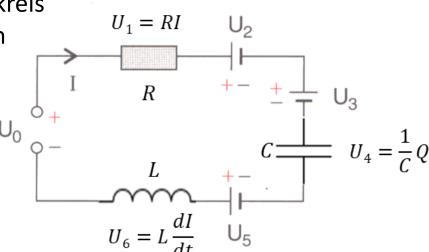
Induktivität 
$$U_L = L \cdot \frac{dI}{dt} = L \cdot \frac{d^2Q}{dt^2}$$

Schaltzeichen


L...Induktivität, 
$$[L] = 1 \frac{vs}{A} = 1$$
Henry  $= 1H$ 



# Kirchhoffsche Regeln


**Knotenregel**: Verzweigen sich mehrere Leiter in einem Punkt, so muss die Summe der einlaufenden Ströme gleich der Summe der auslaufenden Ströme sein:

$$\sum_{i} I_{i} = 0$$



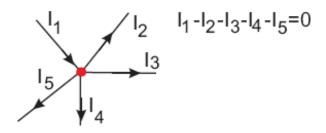
**Maschenregel**: In jedem *geschlossenen* Stromkreis ist die Summe aller Verbraucherspannungen gleich der Generatorspannung

$$\sum_i U_i = 0$$



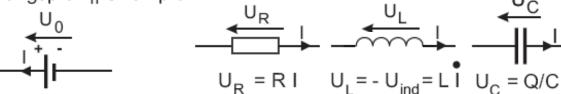
# Knoten- und Maschenregel: Vorzeichenkonvention - "Quellen-/Erzeuger- Zählpfeilsystem

#### 1. Strompfeile einzeichnen:


Batterie: Strompfeil zeigt vom "+" Pol weg.

R,L,C: willkürliche Richtung .

#### 2. Knotenregel anwenden:


Die Summe aller Ströme in einen Knoten ist null.

Vorzeichen: Strompfeil zeigt in Richtung des Knotens: +, vom Knoten weg: -

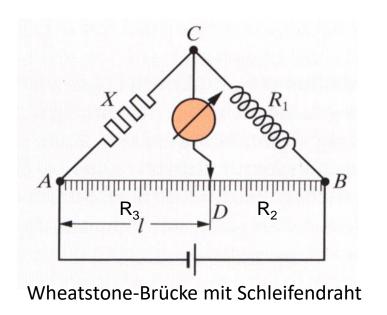


#### 3. Spannungspfeile einzeichnen:

Batterie: vom "-" zum "+" Pol, also Spannungspfeil || Strompfeil R,L,C: antiparallel zum Strompfeil



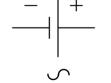
- 4. Umlaufsinn der Maschen im Netzwerk: willkürlich wählen.
- 5. Maschenregel anwenden:


Bei einem Umlauf in einer Masche müssen sich die Spannungen zu null addieren. Vorzeichen: Spannungspfeile im Umlaufsinn orientiert: +, entgegengesetzt: -

## Bsp. Kirschhoffsche Regeln

Serienschaltung Ohmscher Widerstände:  $R_{Ges} = \sum_{i} R_{i}$ 

(Parallelschaltung Ohmscher Widerstände:  $\frac{1}{R_{Ges}} = \sum_{i} \frac{1}{R_i}$ )


### Wheatstonesche Brückenschaltung



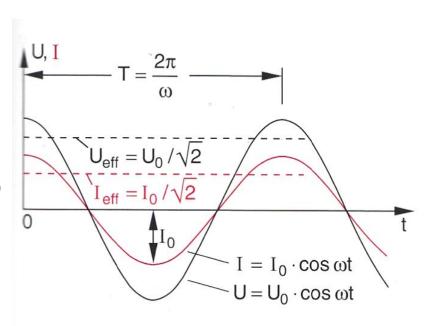
Demonstration Wheatstonesche Brückenschaltung

# Wechselspannungsquelle

bisher: U = konstant, z. B. Batterie



jetzt (auch): Wechselspannungquellen; hier:  $U(t) = U_0 \cos(\omega t + \varphi)$ 



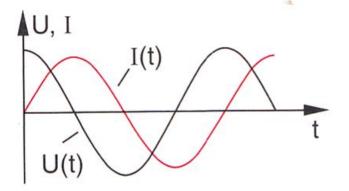

Wechselspannungsquelle mit **Ohmscher Last** *R* 

$$I(t) = \frac{U_0}{R} \cos(\omega t + \varphi)$$

Momentanleistung:  $P(t) = U_0 I_0 cos^2(\omega t + \varphi)$ 

mittlere Leistung:  $\bar{P}=\frac{1}{2}U_0I_0=U_{eff}I_{eff}$ 



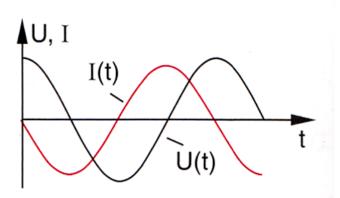

## **Induktive und kapazitive Last**

i) Wechselspannungsquelle mit **induktiver Last** *L*:

$$U(t) = U_0 \cos(\omega t)$$

$$\Rightarrow I(t) = \frac{U_0}{\omega L} \cos(\omega t - \frac{\pi}{2})$$

induktiver Widerstand  $R_L$ :  $R_L = i\omega L$ 




ii) Wechselspannungsquelle mit **kapazitiver Last** *C*:

$$U(t) = U_0 \cos(\omega t)$$

$$\Rightarrow I(t) = U_0 \omega C \cos \left( \omega t + \frac{\pi}{2} \right)$$

kapazitiver Widerstand  $R_C$ :  $R_C = \frac{1}{i\omega L}$ 

