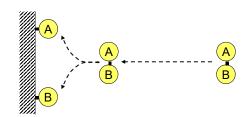
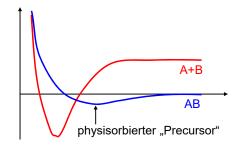

Elektrochemische Adsorption

Thermodynamische Messungen

Direkte Bestimmung von Oberflächenüberschuss \varGamma und freier Adsorptionsenthalpie $\varDelta G_{ad}$

Beispiel: X-/ Au(111) in HClO₄ J. Lipkowski, et al., El.chim. Acta 43 (1998) 2875

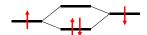



Dissoziative Adsorption

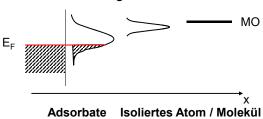
Dissoziation von Molekülen an Oberfläche

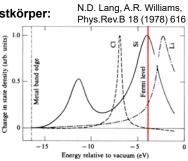
$$G_{ad}(A) + G_{ad}(B) > G_{ad}(AB)$$

Grundlage für heterogene Katalyse



Adsorbatbindung

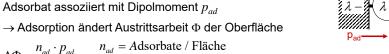

Quantenmechanische Beschreibung von Chemisorption:

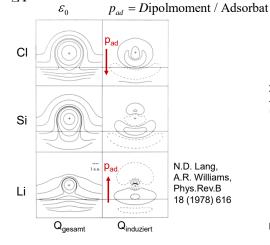

Chemische Bindung im heterogenen Molekül:

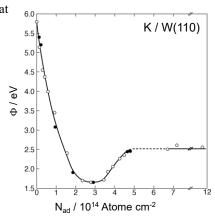
Molekülorbitale

Chemische Bindung zwischen Adsorbat und Festkörper:

Bindung führt zu:

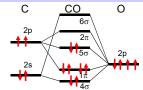

- Absenkung der Energie des bindenden Molekülorbitals
- Verbreiterung des Orbitals ($\Delta E \cdot \Delta t \ge \hbar/2$) "Partialladung des Adsorbates": $A^z \to A^{z+\lambda} + \lambda e^-$ (nicht wohldefiniert/ messbar)



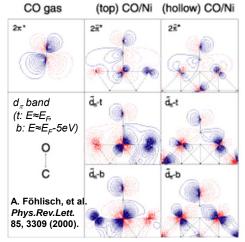

Oberflächendipolmoment

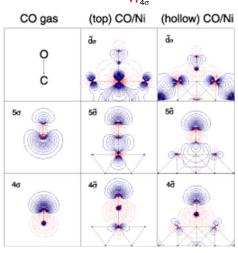
Konsequenz der Partialladung von Adsorbaten:

Adsorbat assoziiert mit Dipolmoment p_{ad}



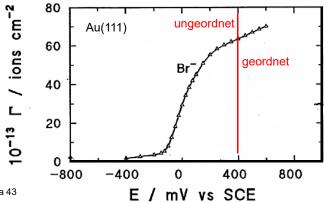
R. Blaszczyszyn et al, Surf. Sci. 51, 396 (1975).


Elektronische Struktur

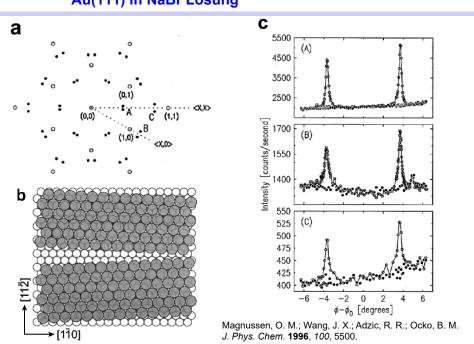

Beispiel: CO Adsorption auf Übergangsmetall

- Transfer von CO 5σ Elektronen in Metall d-Band
- (partieller) Rücktransfer in CO 2π ("back-donation")

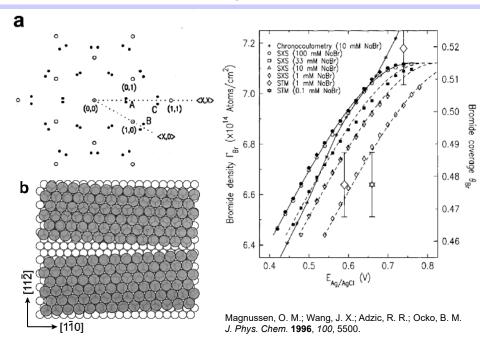
Orbitale für CO/Ni(100):



Ordnung in Adsorbatsystemen


Struktur von Adsorbatschichten:

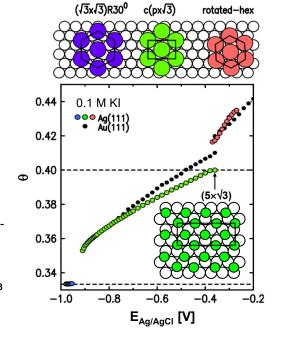
- 2D Gas (niedrige Bedeckung, ungeordnet, mobil)
- 2D Flüssigkeit (hohe Bedeckung, ungeordnet, mobil)
 2D Kristall (hohe Bedeckung, geordnet, immobil)



J. Lipkowski, et al., El.chim. Acta 43 (1998) 2875

Au(111) in NaBr Lösung

Au(111) in NaBr Lösung



Phasenübergänge in Adsorbatschichten

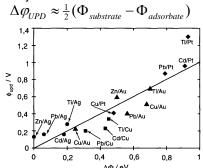
Typen von Adsorbatgittern

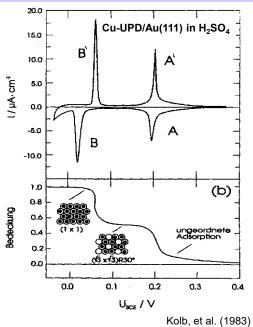
- · einfache "kommensurate" Überstrukturen, z.B. $(\sqrt{3}\times\sqrt{3})R30^{\circ}, c(2\times2)$
- → alle Ads. auf gleichen Plätzen
 "kommensurate" Überstrukturen mit großen Einheitszellen, z.B. $(4 \times 4), (5 \times \sqrt{3})$
 - → definiertes, ganzzahliges Verhältnis aber Besetzung unterschiedlicher Plätze
- "inkommensurate" Überstrukturen, z.B. "(22×√3)", "hex" → kein "Einrasten" des Adsorbatin das Substratgitter

Beispiel: lodid auf Ag(111), Au(111) B.M. Ocko, et al., Physica B 221 (1996) 238

Underpotentialabscheidung (UPD)

Elektrochemische Adsorption von Metallen bei Potentialen positiv des Me/Me^{z+} Gleichgewichtspotentials


Ursprung:

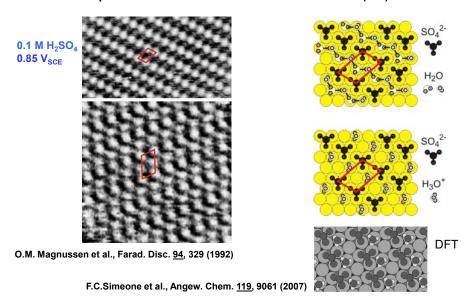

Adsorbat-Substrat Bindung stärker als Adsorbat-Adsorbat Bindung.

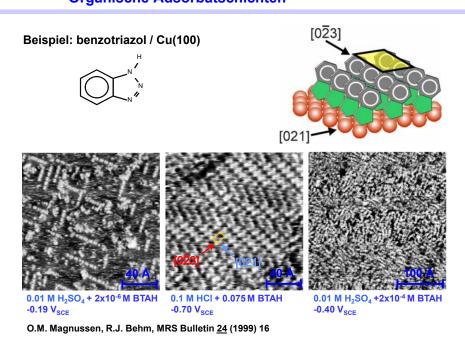
UPD-Verschiebung:

$$\Delta \varphi_{UPD} = \varphi_{UPD} - \varphi_{Me/Me^{z+}}$$


Polykristalline Substrate:

mehrkomponentige Adsorbatstrukturen


Beispiel: TI/Br Adsorbatschichten auf Au(111)


J.X. Wang, et al., J. Phys. Chem. B 104 (2000) 7951

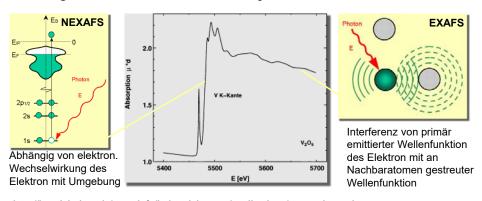
mehrkomponentige Adsorbatstrukturen

Beispiel: Geordnete Sulfat-Adsorbatschicht auf Au(111)

Organische Adsorbatschichten

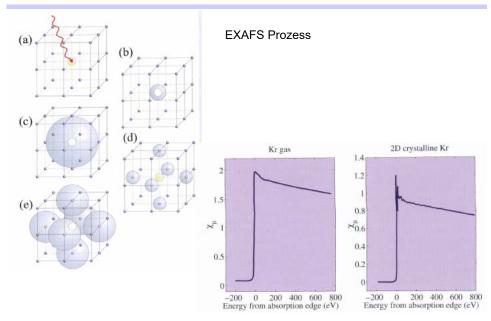
Röntgenabsorptionsspektroskopie

Verlauf der Röntgenabsorption nahe Absorptionskanten:

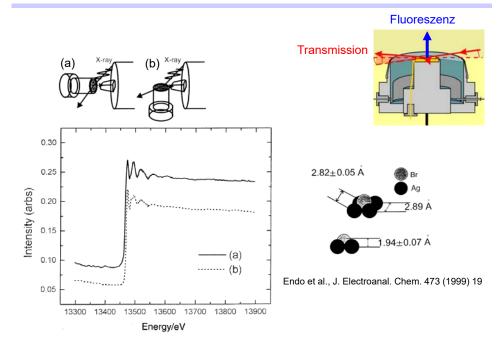

Nahkantenspektroskopie (NEXAFS / XANES)

• Sensitiv auf elektronische Struktur / chemischen Zustand

Extented X-ray Absorption Fine Structure (EXAFS)


• Sensitiv auf lokale Umgebung (Anzahl, Art, Abstand benachbarter Atome)

Messung über: transmittierte Intensität, Röntgenfluoreszenz, Elektronenemission


http://hasylab.desy.de/user_info/industrial_users/applications/x_ray_absorption_spectroscopy

Röntgenabsorptionsspektroskopie

Als Nielsen, McMorrow, Elements of modern X-ray Physics (2001)

Röntgenabsorptionsspektroskopie

Schwingungsspektroskopie

Grundprinzip: Absorption von Photonen aufgrund von Schwingungsanregung Methoden

- Ramanspektroskopie
- Infrarotspektroskopie

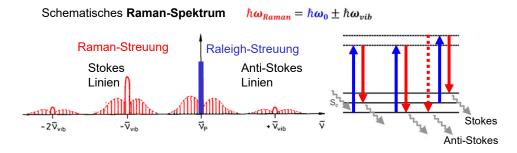
- $E_{vib} = \hbar \omega$
- Summenfrequenzspektroskopie

Anwendungen in Grenzflächenwissenschaften

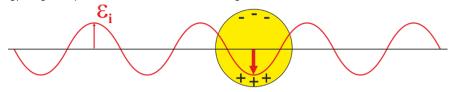
- Identifikation adsorbierter Moleküle
- · Orientierung und Adsorptionsgeometrie

Schwingungsmoden mehratomiger Moleküle

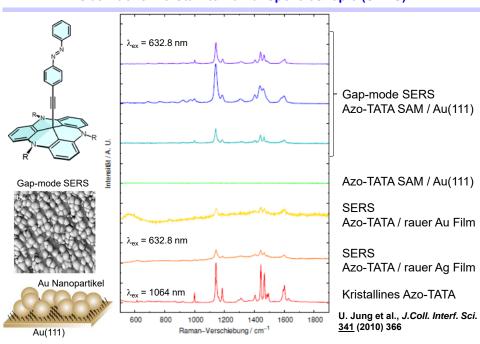
Symmetrische und asymmetrische Streckschwingung


Kipp-, Scher- und
Torsionsschwingung

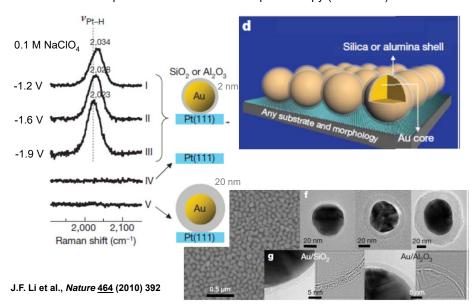
Inversionsschwingung



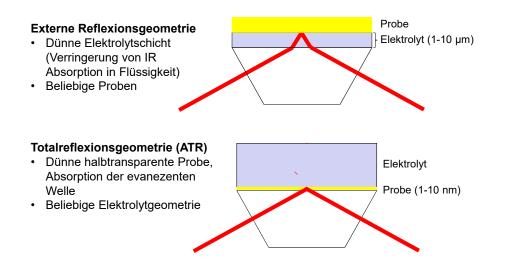
Oberflächenverstärkte Ramanspektroskopie (SERS)


Raman-Effekt: Inelastische Lichtstreuung (Geringer Streuquerschnitt!)

SERS: Hohe Verstärkung an (rauen) Oberflächen bestimmter Metalle (Au, Ag) aufgrund plasmonischer Feldverstärkung



Oberflächenverstärkte Ramanspektroskopie (SERS)

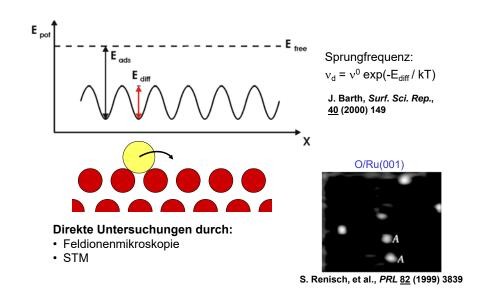


Oberflächenverstärkte Ramanspektroskopie

Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)

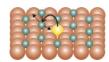
Infrarotspektroskopie

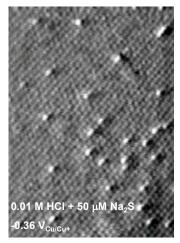
Subtraktion der bei unterschiedlichen Potentialen aufgenommenen IR Spektren ightarrow Beobachtung elektrochemisch induzierter Änderungen

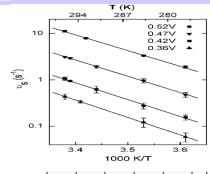

Infrarotspektroskopie

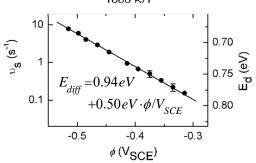
CO_2 CO Adsorbiertes CO (Bedeckung ≥ 7%) auf PdAu(111)-Katalysator on-top multi-fold $Pd_{07}Au_{93}$ Absorbance Pd₁₅Au₈₅ Pd₂₂Au₇₈ Pd₃₇Au₆₃ 5·10⁻³ Pd₁₀₀ 10⁻³ 2400 2000 1900 1800 2300 wavenumber [cm⁻¹]

F. Maroun, et al., Science, 293, 1811-1814 (2001)


Adsorbatdiffusion auf Metalloberflächen

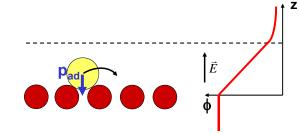

Tracer- Diffusion isolierter, atomarer Adsorbate


Diffusion an elektrochemischen Grenzflächen


Beispiel: S / Cu(100)

http://www.atomic-movies.uni-kiel.de

T. Tansel, O.M. Magnussen, Phys. Rev. Lett. 96 (2006) 026101


Potentialabhängigkeit der Diffusion

Elektrostatischer Beitrag zur freien Adsorptionsenthalpie:

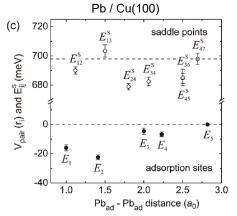
$$\Delta G_{ad} = \Delta G_{ad}^{0} + \frac{p_{ad}}{\varepsilon_{0}} \cdot \sigma_{Me}$$

→ Potentialabhängigkeit:

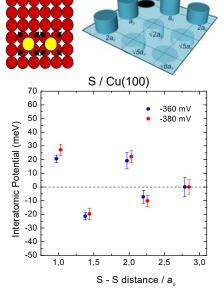
$$\frac{d\left(\Delta G_{ad}\right)}{d\varphi} = \frac{p_{ad}}{\varepsilon_0} \cdot C_d$$

Unterschied im Ladungszustand / Dipolmoment des Adsorbats (inkl. Umgebung) zwischen Adsorptionplatz und aktiviertem Zustand → elektrostatischer Beitrag zur Diffusionbarriere:

$$E_{\textit{diff}} = \left(\Delta G_{\textit{ad,act}} - \Delta G_{\textit{ad}}\right) = E_{\textit{diff}}^{0} + \frac{C_{\textit{d}}}{\varepsilon_{0}} \cdot \left(p_{\textit{ad,act}} - p_{\textit{ad}}\right) \cdot \varphi$$


Analog für:

- Oberflächendefekte (z.B. Diffusion von Adatomen, Fehlstellen)
- Andere Aktivierungsenergien (z.B. Bildung von Adatomen an Stufen)


Adsorbat-Adsorbat Wechselwirkungen

Wechselwirkungen:

- Direkt (z.B. Dipol-Dipol)
- Indirekt (z.B. elastische und elektronische Wechselwirkungen)

S. Guezo et al., J.Phys.Chem. C <u>115</u> (2011) 19336

A. Taranovskyy, et al., *Phys.Rev.Lett.* <u>104</u> (2010) 106101