5-4/1

"Hey! What's this, Higgins? Physics equations? ... Do you enjoy your job here as a cartoonist, Higgins?"

5-4/2 L-S und j-j Kopplung

Kopplung von Drehimpulsen im Atom:

- Abhängig von Verhältnis der Kopplungsenergien
 - zwischen magnetischen Bahnmomenten a_{ij} $\vec{l}_i \cdot \vec{l}_j$ und Spinmomenten b_{ij} $\vec{s}_i \cdot \vec{s}_j$ der Elektronen
 - zwischen Bahn- und Spinmoment eines einzelnen Elektrons $c_{sl} \vec{s}_i \cdot \vec{l}_i$

Grenzfälle:

- L-S Kopplung: $a_{ij} \ \vec{l}_i \cdot \vec{l}_j, \ b_{ij} \ \vec{s}_i \cdot \vec{s}_j >> c_{sl} \ \vec{s}_i \cdot \vec{l}_i$ j-j Kopplung: $a_{ij} \ \vec{l}_i \cdot \vec{l}_j, \ b_{ij} \ \vec{s}_i \cdot \vec{s}_j << c_{sl} \ \vec{s}_i \cdot \vec{l}_i$

5-4/3 L-S Kopplung

Kopplung von:

- Bahndrehimpulsen zu $\vec{L} = \sum_{i} \vec{l}_{i}$ mit $\left| \vec{L} \right| = \sqrt{L(L+1)} \ \hbar$ Elektronenspins zu $\vec{S} = \sum_{i} \vec{s}_{i}$ mit $\left| \vec{S} \right| = \sqrt{S(S+1)} \ \hbar$
- \vec{S} und \vec{L} zu Gesamtdrehimpuls $\vec{J} = \vec{L} + \vec{S}$ mit $\left| \vec{J} \right| = \sqrt{J(J+1)} \ \hbar$

Für L-S Kopplung gilt:

- Feinstrukturaufspaltung $<< \Delta E_{nl}$ → Multiplettstruktur in Termschema und Spektren
- Feinstrukturaufspaltung wird mit wachsendem n kleiner
- · L-S Kopplung dominant für leichte Elemente

5-4/4 L-S Kopplung

2 p-Elektronen Beispiel: L S J 2 3, 2, 1 $(^{3}D_{3}, ^{3}D_{2}, ^{3}D_{1})$ 1 2 0 2 ³P₂, ³P₁, ³P₀ (\dots) nur für $n_1 \neq n_2$ 1 1 2, 1, 0 1 0 $(^{1}P_{1})$ 0 1 $(^{3}S_{1})$ 1 0 0 0 ${}^{1}S_{0}$

Spin- und Bahndrehimpuls-Einstellungen der 2 Elektronen

5-4/5 Grundzustand bei L-S Kopplung

Der energetisch am tiefsten liegende Zustand ist durch folgende empirische Regeln bestimmt (Hundsche Regeln):

- Voll aufgefüllte s, p, d, f Unterschalen liefern stets $\vec{L} = 0$ und $\vec{S} = 0$.
- In teilweise gefüllter Unterschale liegen die Terme mit maximalem *S* (d.h. höchster Multiplizität) am tiefsten.
- Für Terme mit maximalem S werden die Elektronen so auf die Unterzustände m_l verteilt, dass $\left|\vec{L}_z\right| = \sum m_l \hbar = m_{L,\max} \hbar$ maximal wird. Die Drehimpuls-Quantenzahl L ist dann gleich $m_{L,\max}$.
- Ist die Unterschale weniger als halbgefüllt ist der Term mit J=/L S / Grundzustand, ist die mehr als halbgefüllt, der Term mit J-L+S .

Damit ergibt sich der durch das Termsymbol $^{2S+l}L_J$ bezeichnete Grundzustand.

5-4 / 6 j-j Kopplung

Kopplung von:

• Elektronendrehimpulsen \vec{j}_i zu Gesamtdrehimpuls des Atoms $\vec{J} = \sum_i \vec{j}_i$ mit $\left| \vec{J} \right| = \sqrt{J(J+1)} \ \hbar$

Für j-j Kopplung gilt:

- Keine definierten L und S Werte
 → keine Multiplettsstruktur
- · j-j Kopplung dominant für sehr schwere Elemente