Physik der Materie I, WS 2018/2019 - Übungsblatt 11

Übungstermin: 28.1.2019

Aufgabe 2

Ein Röntgengerät, bestehend aus einer Röntgenanode aus Kupfer und einem Monochromator, der selektiv die Photonen der Cu K_{α} Linie ($E_{Photon} = 8.9 \text{ keV}$) durchlässt, erzeugt einen Strahl von 1 mm² Durchmesser mit einer Intensität von 10^8 Photonen/s.

a) Schätzen Sie die Energie ab, die pro Zeiteinheit 1) in der Haut sowie 2) in den tieferliegenden Gewebeschichten einer Person deponiert würde, die in diesem Strahl steht. Nehmen Sie dazu an, dass das Gewebe aus reinem Wasser besteht (Massenabsorptionskoeffizient $\mu_{m,H20}=6$ cm²/g bei 8.9 keV) und die menschliche Haut ca. 2 mm dick ist.

Hinweis: Der lineare Absorptionskoeffizient μ und der Massenabsorptionskoeffizient μ m hängen zusammen über $\mu = \rho \cdot \mu m$, wobei ρ die Dichte des Materials ist.

b) Die als unbedenklich anzusehende Strahlendosis ist $0.1~\mu Sv = 10^{-7}~J/kg$ pro Stunde. Wie dick muss eine Abschirmung aus Blei ($\mu_{m,Pb} = 200~cm^2/g$ bei 8.9~keV, $\rho_{Pb} = 11.34~g/cm^3$) sein, damit in der Haut weniger als diese Dosis deponiert wird, so dass mit dem obigen Röntgengerät aus Sicht des Strahlenschutzes unbedenklich gearbeitet werden kann?

Aufgabe 3

Ein Wasserstoffatom geht vom Zustand mit (n, l, m) = (2, 1, 0) in den Grundzustand über und sendet dabei ein Photon aus. Die Wellenfunktionen für die beiden Zustände lauten:

$$\psi_{1,0,0}(\vec{r}) = \frac{1}{\sqrt{\pi} \ a_0^{3/2}} \cdot e^{-r/a_0} \ ; \ \psi_{2,1,0}(\vec{r}) = \frac{1}{(2a_0)^{3/2} \sqrt{4\pi} \ a_0} \cdot r \cdot \cos\theta \cdot e^{-r/(2a_0)}$$

a) Begründen Sie unter Verwendung des Ortsvektors in Kugelkoordinaten $\vec{r} = (x, y, z) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$ warum die x- und y-Komponenten des Matrixelements des Übergangsdipolmoments für diesen Übergang verschwinden. Nutzen Sie dabei wie in der Vorlesung aus, dass sich das Integral übe

Übergang verschwinden. Nutzen Sie dabei wie in der Vorlesung aus, dass sich das Integral über das Volumen als ein Produkt der Integrale über die Variablen r, θ und ϕ schreiben lässt.

b) Zeigen Sie, dass die z-Komponente des Matrixelements des Übergangsdipolmoments

$$M_{jk,z} = \frac{4!(2/3)^5}{3\sqrt{2}}e_0a_0 = 0.745 e_0a_0$$
 beträgt.

c) Berechnen Sie damit die mittlere Lebensdauer des angeregten Zustands. Setzen Sie dazu voraus, dass Übergänge durch andere Prozesse (z.B. Stöße) vernachlässigt werden können.

Hinweise:
$$\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}} \quad ; \quad \int \sin(ax) \cdot \cos^{n}(ax) dx = -\frac{1}{a(n+1)} \cos^{n+1}(ax)$$