Table 30-2
Three electric vectors

Name	Symbol	Associated with	Boundary Condition	
Electric field	E	All charges	Tangential component continuous	
Electric displacement	D	Free charges only	Normal component continuous	
Polarization (electric dipole moment per unit volume)	P	Polarization charges only	Vanishes in vacuum	a
Defining equation for E		$\mathbf{F} = q\mathbf{E}$		Eq. 27-2
General relation among the three vectors $D = \epsilon_0 E + P$				Eq. 30-23
Gauss's law when dielectric media are present $\oint \mathbf{D} \cdot d\mathbf{S} = q$				Eq. 30-26
Empirical relations for certa materials*	(i)	charge only))∈₀E	Eq. 30-24 Eq. 30-25	

^{*}Generally true, with κ independent of E, except for certain materials called *ferroelectrics*; see footnote on page 667.

Consider two capacitors, each having plate separation d. In each case, a slab of metal of thickness d/3 is inserted between the plates. In case (a), the slab is not connected to either plate. In case (b), it is connected to the upper plate. The capacitance is higher for

- 1. case (*a*).
- 2. case (b).
- 3. The two capacitances are equal.

Consider a capacitor made of two parallel metallic plates separated by a distance d. The top plate has a surface charge density $+\sigma$, the bottom plate $-\sigma$. A slab of metal of thickness l < d is inserted between the plates, not connected to either one. Upon insertion of the metal slab, the potential difference between the plates

- 1. increases.
- 2. decreases.
- 3. remains the same.

=> Don E-Felol verrichtet Arbeit (+) ander Platte DE muss abnehmen DE MUSS abnehmen 1 nimmt Qb