
Microcontroller

5-73

AT89S8252 In-System Programming

Introduction
This application note illustrates the in-
system programmability of the Atmel
AT89SXXXX (S-series) microcontrol-
lers. A method is shown by which an
AT89S8252 in an application may be
programmed remotely over a standard
telephone line.

The software for this application note
may be obtained by downloading from:
Atmel BBS (408) 436-4309 or
Website: http://www.atmel.com

An Example Application
The application shown in Figure 1 is a
simple implementation of a moving dis-
play. This application was selected for its
simplicity and ability to show graphically
the results of in-system programming.
The text to be displayed is programmed
into the AT89S8252 microcontroller as
part of its firmware, and can be changed
by reprogramming the device.

The displayed text is presented in one of
two modes, selected by a switch. In the
first mode, one character at a time
enters the display from the right and
moves quickly to the left through each
element of the display to its final position
in the assembled message. In the sec-
ond mode, the message moves through
the display, from right to left, with the dis-
play acting as a window onto the mes-
sage. This mode is familiar as the
method often used in displays of stock
prices.

The text is displayed on four DL1414T,
four-element, 17-segment alphanumeric
displays with integral decoders and driv-
ers. This yields 16 total display ele-
ments, each capable of displaying digits
0-9, the upper case alphabet, and punc-
tuation characters. The displayable char-
acter codes are ASCII 20-5F (hexadeci-
mal).

A power-on reset circuit and a 6-MHz
crystal complete the application. Neither
external program memory nor external
data memory is used.

Modifications to the Application to
Support In-System Programming
The AT89S8252 microcontroller features
an SPI port, through which on-chip Flash
memory and EEPROM may be pro-
grammed. To program the microcontrol-
ler, RST is held high while commands,
addresses and data are applied to the
SPI port. For command format and tim-
ing requirements, refer to the Atmel
AT89S8252 Microcontroller data sheet.

Figure 2 shows the example application
modified for in-system programming.
The microcontroller reset circuit has
been eliminated and RST is controlled
by the programmer. The absence of a
reset circuit requires that the program-
mer reset the microcontroller when
power is first applied to the application.
An optional connection (SHUTDN) to an
AT89S8252 interrupt input has been pro-
vided to allow the programmer to signal
the microcontroller prior to programming.
The resident firmware responds to the
interrupt by d isplaying a message
(“PROGRAMMING”) indicating that pro-
gramming is in progress.

A simple latch, composed of four OR
gates, has been added between the out-
puts of the microcontroller and the dis-
play control inputs. The latch holds the
display control signals inactive when
RST is asserted, eliminating erratic oper-
ation of the displays during program-
ming. No isolation of the display address
or data inputs is required, since these
inputs are ignored by the displays when
the control signals are inactive. After
programming, when RST is deasserted,
the microcontroller I/O ports are high as

Microcontroller

Application
Note

Microcontroller

0898A-A–12/97

Microcontroller5-74

the latch becomes transparent. Since the display control
inputs are inactive high, the display contents are not dis-
turbed until the new firmware writes the displays. Although
not essential in this application, it might be imperative in
some applications that the state of the peripheral circuitry
not be disturbed during programming.

Finally, programmer access has been provided to three
AT89S8252 SPI port pins: P1.5/MOSI, P1.6/MISO and
P1.7/SCK. SPI port pin P1.4/SS is not used during pro-
gramming. In the example application, the SPI port pins are

available for use in programming the microcontroller. Appli-
cations which utilize the SPI port pins must be modified by
the addition of circuitry which will isolate the SPI port when
RST is asserted, freeing the pins for use in programming
the microcontroller. Circuitry which is added to support pro-
gramming must appear transparent to the application dur-
ing normal operation.

The code for the modified display application is shown in
Appendix 2.

Figure 1. AT89S8252 Moving Display Application Example

Microcontroller

5-75

Figure 2. AT89S8252 Moving Display Application Modified for In-System Programming

The Programmer
The programmer shown in Figure 3 interfaces with a
modem, from which it receives packetized data. After dis-
secting the data packets, the programmer generates the
signals required to program the data into the AT89S8252
microcontroller in the modified application. Code for the
programmer is shown in Appendix 3.

The programmer circuitry consists of little more than an
Atmel 20-pin AT89C2051 microcontroller and a Maxim
MAX232 line driver/receiver. The microcontroller runs at
11.0592 MHz, which allows the serial port to operate at a
number of standard baud rates. The line driver/receiver
produces RS-232 levels at the modem interface while
requiring only a 5-V power supply. The AT89C2051 micro-
controller does not support external program or data mem-
ory, which requires that program code be kept small
enough to fit into on-chip memory.

The serial interface, through which the programmer con-
nects to the modem, supports two handshaking signals,
DTR and DSR. On power up, the programmer asserts
DTR, to which the modem responds by asserting DSR. If
the modem should fail to respond to any command, includ-
ing the command to hang up, the programmer deasserts
DTR, which forces the modem to hang up.

The programmer controls the modem by sending ASCII
command strings over the serial interface, to which the
modem responds with Hayes-style ASCII numeric codes.
The programmer code is optimized for use with the U.S.
Robotics Sportster 14,400 baud external modem used in
the test configuration and may require modifications if used
with other modems.

Since a reset circuit is absent from the modified application,
the programmer provides the power-on reset function to the
AT89S8252 microcontroller. The programmer powers up
with RST asserted, resetting the microcontroller. Some

Microcontroller5-76

time later, RST is deasserted under firmware control, allow-
ing the application microcontroller to run normally. When

programming is required, the programmer again asserts
RST.

Figure 3. AT89S8252 Programmer

During programming, the programmer outputs serial data
on the MOSI pin, synchronized to a software-generated
clock output on the SCK pin. Serial data is input on the
MISO pin, also synchronized to SCK. The maximum fre-
quency of SCK must be less than 1/40th the crystal fre-
quency of the AT89S8252 microcontroller being pro-
grammed, as specified in the AT89S8252 data sheet. The
documented code produces a maximum SCK frequency of
approximately 90 KHz, permitting a minimum AT89S8252
crystal frequency of approximately 3.6 MHz.

Remote Programming Over a Standard
Telephone Line
The programmer and modified application described previ-
ously are connected to a phone line through a modem at a
remote site. Using a personal computer with a modem, a
user can upload code containing a new message, which is
programmed into the AT89S8252 microcontroller in the
application. When programming is complete, the microcon-
troller executes the new firmware, which displays the new
message.

Local Station
The local station in the test configuration consists of an IBM
PC AT-compatible personal computer with a Cardinal
MVPV34ILC 33,600 baud internal modem. Any modem
may be used, as long as it is compatible with the data com-

munications software and matches the data rate and error
correction protocols of the modem at the remote site.

Procomm Plus for Windows, version 3.0, a commercial
data communications package, is used to configure the
modem, set up communications parameters, and establish
a link with the remote modem. Procomm Plus includes a
macro language called ASPECT, which allows the user to
write and compile scripts which implement custom file
transfer protocols. A simple ASPECT script was written to
read the contents of a code file and upload it to the remote
programmer. The ASPECT script is shown in Appendix 4.

The file transfer protocol (FTP) implemented is a simple
send-and-wait, packet-oriented protocol. The FTP transmit
and receive modes are diagrammed in the flowcharts in fig-
ures 4 and 5, respectively. The computer sends each
packet without flow control and waits for a response. The
programmer may acknowledge the packet by sending an
ACK or may negatively acknowledge the packet by sending
a NAK. Upon receipt of an ACK, the computer sends the
next packet. If the clone receives a NAK, it resends the
same packet. Transmission proceeds in this manner until
the entire file has been transferred.

The programmer might respond to a packet by sending a
CAN, which indicates that a non-recoverable error has
occurred and that the computer should immediately abort
the file transfer. If the programmer fails to respond to a

Microcontroller

5-77

packet within a limited period of time, the computer will
resend the same packet. The computer will continue to
resend the same packet until a valid response is received
or until the allowed number of attempts is exceeded, at
which time the file transfer is aborted.

The send-and-wait nature of the FTP allows the time
required for the programmer to program the packet data
into the application microcontroller to be easily absorbed.
Programming verification requires no explicit command or
result codes, or additional data transfers. The program-
mer’s response to a packet reflects the result of the pro-
gramming verification operation performed by the program-
mer: ACK indicates success, CAN indicates failure.

Hexadecimal object file format (Intel hex) was chosen as
the format of the files to be uploaded to the programmer.
The records in a hex file serve, unchanged, as the packets
in the FTP described above; no service fields need to be
added. The fields in Intel hex file records are shown in
Appendix 1. The colon which begins each record serves as
the packet signature field. The load address field serves as
the packet sequence number. A checksum is provided as
the last field in each record. Since 7-bit ASCII coding is uti-
lized, the eighth bit of each byte is available to be used for
parity checking.

Since the AT89C2051 microcontroller in the programmer
does not utilize external data memory, necessary packet
buffering must be done using internal RAM. Limited mem-
ory precludes the use of conventional FTPs which utilize
packets of 128 bytes or more. The hex packet format used
in this application limits packet data fields to 16 or fewer
entries, requiring little memory for buffering.

A disadvantage of the hex packet format is the use of
ASCII, which requires each program data byte to be
expressed as two hex characters. This demands that
nearly twice as many bytes be transferred as might other-
wise be required. This is not a severe limitation, however,
since typical file transfer times are on the order of a few
seconds.

Remote Station
The remote station in the test configuration consists of the
programmer and modi f ied appl icat ion, previously
described, connected to a U.S. Robotics Sportster 14,400-
baud external modem.

After power is appl ied, the programmer resets the
AT89S8252 microcontroller in the application, and then
sets its control outputs inactive, allowing the application to
run normally. The programmer configures the modem to
answer incoming calls and puts itself to sleep. While the
programmer sleeps, the modem monitors the phone line,
waiting for an incoming call. When a call is detected, the
modem answers and attempts to establish communication
with the caller. If a connection is established, the modem
sends a connect code to the programmer, waking it up. The

programmer verifies the connect code and begins polling
for a valid packet header. Invalid connect codes are
ignored.

Incoming packets must arrive fewer than 30 seconds apart,
or the modem hangs up and the programmer returns to
sleep, waiting for the next call. If the caller hangs up, the
30-second period must expire before another call will be
answered. Calls incoming during the reset delay period are
ignored.

If a valid packet header is received prior to the expiration of
the reset delay period, the programmer will attempt to read
and validate the incoming packet. At any time during
packet reception, an invalid character, parity error or time-
out during character reception will cause the partial packet
to be declared invalid and discarded.

Two packet types are defined: data and end-of-file. A data
packet contains five fields in addition to the packet header,
one of which is a variable length data field. The data field
contains program data to be written into the application
microcontroller. The load address field contains the
address at which the data is to be written. The end-of-file
packet contains the same fields as the data packet, except
that the data field is empty. This packet type has special
meaning to the programmer, as explained below.

Any packet which contains an invalid record type, record
length or checksum is invalid. Program data accumulated
during the processing of an invalid packet is discarded. The
programmer sends a NAK to the computer to signal recep-
tion of an invalid packet and resumes polling for a valid
packet header.

Receipt of the first valid data packet causes the program-
mer to interrupt the application microcontroller. The micro-
controller responds to the interrupt by abandoning its usual
routine and displaying a message (“PROGRAMMING”)
indicating that programming is taking place. If this is the
first valid data packet since power was applied or an end-
of-file packet was received, the programmer asserts the
control signals necessary to place the microcontroller into
programming mode.

The first and subsequent valid data packets are dissected
as they are received and the data which they contain is pro-
grammed into the application microcontroller at the address
indicated in the packet load address field. After program-
ming, the data is read back from the microcontroller and
verified against the received packet data. If programming
was successful, the programmer sends ACK to the com-
puter. The programmer then resumes polling for a valid
packet header, subject to the thirty second reset delay.

If programming fails, the programmer sends CAN to signal
the computer to abort the file transfer. The modem hangs
up and the programmer returns to sleep, waiting for the
next call. The application microcontroller is left in program-

Microcontroller5-78

ming mode, preventing it from executing the incomplete or
invalid firmware which it contains.

It is important to note that invalid packets are NEVER pro-
grammed into the application microcontroller. To do so
might over-write valid program data which could not be
recovered.

Upon receipt of an end-of-file packet, the programmer
returns its control outputs to the inactive, power-on state,
allowing the application microcontroller to begin execution
of its new firmware. The programmer then resumes polling
for a valid packet header, subject to the 30-second reset
delay. If a valid packet is received prior to the expiration of
the 30-second delay, another programming cycle begins,
which can only be terminated by the reception of a valid
end-of-file packet.

If the reset delay expires prior to the reception of a valid
end-of-file packet, the modem will hang up and the pro-
grammer will return to sleep, waiting for the next call. In this
case, the application microcontroller is left in programming
mode, preventing it from executing its firmware. To return
the application to normal operation, another call must be
received, and a valid program file downloaded, terminated
by an end-of-file packet.

Setting Up the Hardware
Local Station
Install the selected modem into the IBM PC AT-compatible
computer and connect it to a standard analog telephone
line. The modem must support a data rate of at least 9600
baud.

Remote Station
Connect the programmer and modified display application
to the U.S. Robotics Sportster 14,400 baud external
modem. Connect the modem to a standard analog tele-
phone line and set the modem switches as indicated below.
Modem switch settings:

Turn the modem on and apply power to the programmer
and display application. The microcontroller in the applica-
tion will begin executing its firmware, if it contains any. The
programmer will initialize the modem, as indicated by the
activity on the modem status indicators. If it should become

necessary to reinitialize the modem, briefly interrupt power
to the programmer.

Installing and Configuring Procomm Plus for
Windows, Version 3.0
Install Procomm Plus as instructed in the User Manual.
When prompted to specify the modem in use, select the
installed modem from the list.

Put the provided ASPECT script (ATX.WAX) into the Pro-
comm Plus ASPECT directory. If the default directories
were utilized during installation, the correct directory is:
\PROWIN3\ASPECT.ATX.WAX is the executable ASPECT
script which results from compil ing the source fi le
ATX.WAS, shown in Appendix 4. Source files may be
edited from within Procomm Plus using the ASPECT Edi-
tor, available in the Tools menu. The ASPECT Editor pro-
vides the option to compile a source file in the Editor Tools
menu.

Launch Procomm Plus and create a Connection Directory
entry for the remote station. Under Port Settings, set the
baud rate to 9600, parity to EVEN, number of data bits to 7,
number of stop bits to 1, plex to FULL.

Creating a Hex File
The example source code for the modified display applica-
tion (Appendix 2) contains a string at location “usr_msg”
which is written repeatedly to the alphanumeric displays.
The user may substitute a different message, as long as it
is enclosed in single quotes and is null-terminated. Long
messages may require that the value in the subsequent
ORG directive be increased to prevent the message from
being over-written by code. The message may contain only
characters with ASCII codes from 20-5F (hexadecimal).
The modified source code may then be assembled, linked
and an Intel hex file produced.

During the development of this application note, code was
assembled and hex files generated utilizing the tools in a
vintage copy of the Intel MCS-51 Software Development
Package for the IBM PC. The source code may require
cosmetic changes for compatibility with other assemblers
and software tools. It is especially important to note that
variations exist in Intel hex file format. This application
requires that record data fields be limited to 16 or fewer
entries and that address fields contain 4 hex digits. The
user must verify that the hex files produced by the selected
tools conform to the format documented in Appendix 1.

Uploading a Hex File
Launch Procomm Plus and select the correct entry from the
list box in the toolbar to dial the remote site. If the line is
busy and remains busy for more than 30 seconds, the pro-
grammer must be reset.

After a connection with the remote site has been estab-
lished, run the ATX ASPECT script by selecting it from the
list box in the toolbar. When prompted by the script, enter

1 UP DTR normal

2 DOWN Numeric result codes

3 DOWN Display result codes

4 DOWN Suppress command echo

5 UP Auto answer

6 UP CD normal

7 UP Load NVRAM defaults

8 DOWN Smart mode

Microcontroller

5-79

the path and file name (including extension) of the hex file
to upload to the programmer at the remote site. The pro-
grammer must receive the first record from the file within 30
seconds of the time the connection was established or it
will hang up and the user will be required to redial.

During the data transfer, data and status information is dis-
played in the Procomm Plus Terminal Window. If the trans-
fer completes successfully, the message “End of File” will
appear in the Terminal Window. The user has 30 seconds
from the appearance of messages “End of Fi le” or
“EXCESSIVE RETRIES: UPLOAD ABORTED” to rerun the
script and upload another file, if desired, before the pro-
grammer hangs up. If the message “UPLOAD ABORTED
BY REMOTE” appears, the programmer has hung up and
the user must redial before uploading another file.

Microcontroller5-80

Appendix 1: Intel Hex File Definition
Each record in hexadecimal object file format (Intel hex) contains the following fields:

<:> <rec length> <load address> <rec type> <data> <checksum>

The colon is the record header.

The record length field consists of two hex digits, and represents the number of entries in the data field.

The load address field consists of four hex digits, and indicates the absolute address at which the data in the data field is to
be loaded.

The record type field consists of two hex digits, which are always zero in data records.

The data field contains from one to 16 pairs of hex digits.

The last two hex digits are a checksum on the record length, load address, record type, and data fields. The sum of the
binary equivalents of these fields and the checksum itself is zero.

Each record in the file is terminated by a carriage return (0D hex) and line feed (0A hex).

A type one record marks the end of the file. The record always contains “:00000001FF”.

Appendix 2: Code for Modified Display Application

NAME LEDShow1

; Displays predefined text strings on the LED display in one of two modes.

; The display mode can be changed at run time with the switch.

;

; The program may be interrupted by External Interrupt 1. This will cause the

; processor to display a string and enter a wait loop with interrupts disabled.

; Only reset will restore normal operation. This facility is provided so that

; the programmer can trigger an orderly shutdown before reprogramming the part.

;

; The LED display consists of four devices of four elements each,

; for a total display capacity of 16 characters.

; The display devices are numbered 0 to 3, from the right.

; The display elements are numbered from 0 to 3, from the right.

; Character positions are numbered 1 to 16, from the right.

NDEVS EQU 4 ; number of devices

NELMS EQU 4 ; number of elements in each device

SPACE EQU 20h ; blank

DSEG AT 60h ; stack origin

stack:DS 20h ; stack depth

SWITCH BIT p1.0 ; display mode select input

CSEG

ORG 0000h ; power on/reset vector

jmp init

ORG 0003h ; external interrupt 0 vector

reti ; undefined

ORG 000bh ; timer 0 overflow vector

reti ; undefined

ORG 0013h ; external interrupt 1 vector

Microcontroller

5-81

jmp shutdown

ORG 001bh ; timer 1 overflow vector

reti ; undefined

ORG 0023h ; serial I/O interrupt vector

reti ; undefined

ORG 30h ; begin constant data space

pgm_msg: DB ' PROGRAMMING', 0

usr_msg: DB ' ATMEL AT89S8252 CMOS MICROCONTROLLER'

DB ' WITH FLASH MEMORY AND SPI PORT', 0

ORG 0100h ; begin code space

USING 0 ; Register bank 0 (RB0)

init:

mov sp, #(stack-1) ; initialize stack pointer

setb IT1 ; ext 1 interrupt edge triggered

mov IE, #10000100b ; enable ext 1 and global interrupts

m0:

jb SWITCH, m1 ; check position of switch

call rotate_msg ; display message

jmp m0 ; again

m1:

call shift_msg ; display message

mov a, #3 ; pause 3 sec between displays

call delay_sec ;

jmp m0 ; again

shutdown:

; Respond to interrupt generated by serial programmer.

clr ea ; prevent interrupts

mov dptr, #pgm_msg ; point to message

call show_string ; display message

jmp $; wait for reset

show_string:

; Display null-terminated string pointed to by DPTR. The string is

; left-justified in the display. If the length of the string exceeds

; the number of display positions the excess characters are ignored.

call clear_display; begin by blanking display

mov b, #(NDEVS*NELMS) ; total display positions

gs1:

clr a ; get char

mov ca, @a+dptr;

jz gs2 ; done if string terminator

call put_char ; display char at position in B

Microcontroller5-82

inc dptr ; point to next char

djnz b, gs1 ; done when last position is filled

gs2:

ret

clear_display:

; Fill display with blanks.

; All registers preserved.

push acc

push b

mov b, #(NDEVS*NELMS) ; total display positions

c1:

mov a, #SPACE

call put_char ; write space char

djnz b, c1 ; do all positions

pop b

pop acc

ret

shift_msg:

; Display null-terminated string. Each character in the string,

; in turn, enters the display from the right and is moved quickly

; through each element of the display to its final position.

; The string may contain any number of characters, including none.

; If the length of the string exceeds the number of display

; positions, the excess characters are ignored.

call clear_display ; begin by blanking display

mov r5, #(NDEVS*NELMS) ; total display positions

mov dptr, #usr_msg ; point to message

ps1:

mov b, #1 ; first display position

ps2:

clr a

movc a, @a+dptr ; get char

jz ps4 ; done if string terminator

call put_char ; display char at position in B

mov a, #25 ; 25 ms

call delay_ms ; delay so char can be seen

mov a, b ; set up for compare

clr c ; ready for subtraction

subb a, r5 ; compare next position to final

jnc ps3 ; jump if char is in final position

mov a, #SPACE

call put_char ; blank out char

Microcontroller

5-83

inc b ; next position

jmp ps2

ps3:

inc dptr ; point to next char

djnz r5, ps1 ; final position for next char

ps4:

ret

rotate_msg:

; Display null-terminated string. The string moves through the

; display, from right to left, with the display acting as a window

; onto the string. The string may contain any number of characters,

; including none.

mov dptr, #usr_msg ; point to string

clr a ; get first char

movc a, @a+dptr;

jz dd11 ; blank display and exit if null string

call clear_display ; begin by blanking display

; Phase I. Shift the string into the display from the

; right until the first character is in the left-most

; display element. If the string has fewer characters than

; the display has elements, fill the balance with blanks.

mov r7, #0 ; loop counter, one pass per element

dd1:

mov dptr, #usr_msg ; point to string

mov b, r7 ; character position

inc b ; adjust

dd2:

clr a ; get next char

movc a, @a+dptr;

jz dd3 ; jump if string terminator

call put_char ; display char at position in B

inc dptr ; point to next char

djnz b, dd2 ; loop until all positions written

jmp dd5 ; next pass

dd3: ; encountered end of string

mov a, #SPACE ; pad balance of display with blanks

call put_char ; display char at position in B

djnz b, dd3 ; next position

dd5:

mov a, #150 ; 150 ms

Microcontroller5-84

call delay_ms ; delay so string can be seen

inc r7 ; next pass

cjne r7, #(NDEVS*NELMS), dd1 ; loop until all elements done

; Phase II. Shift the string THROUGH the display from

; the right until the last character is in the left-most

; display element. If the string has fewer characters than

; the display has elements, pad the balance with blanks.

mov dptr, #usr_msg ; point to string

inc dptr ; start with the second char

dd6:

clr a ; get char

movc a, @a+dptr;

jz dd11 ; blank display and exit if string end

push dpl ; save string pointer

push dph

mov b, #(NDEVS*NELMS) ; total char positions

dd7:

clr a ; get next char

movc a, @a+dptr ;

jz dd8 ; jump if string terminator

call put_char ; display char at position in B

inc dptr ; point to next char

djnz b, dd7 ; loop until all positions written

jmp dd10 ; next pass

dd8: ; encountered end of string

mov a, #SPACE ; pad balance of display with blanks

call put_char ; display char at position in B

djnz b, dd8 ; next position

dd10:

pop dph ; restore string pointer

pop dpl ;

inc dptr ; point to next char

mov a, #150 ; 150 ms

call delay_ms ; delay so string can be seen

jmp dd6 ; process next char

dd11:

call clear_display ; blank display

mov a, #150 ; 150 ms

call delay_ms ; delay

ret

put_char:

; Display character in A at position indicated in B.

Microcontroller

5-85

; All registers preserved.

push acc

push b

mov p0, a ; move character to output port

; Calculate device and element from display position.

mov a, b ; position 1..n

dec a ; convert to 0..n-1

mov b, #NELMS ; elements per device

div ab ; A= device, B= element

mov p2, #0ffh ; clear display control port

s0:

cjne a, #0, s1 ; check device number

mov a, #00010000b ; device 0 select

jmp s5

s1:

cjne a, #1, s2

mov a, #00100000b ; device 1 select

jmp s5

s2:

cjne a, #2, s3

mov a, #01000000b ; device 2 select

jmp s5

s3:

cjne a, #3, s4

mov a, #10000000b ; device 3 select

jmp s5

s4:

jmp init ; undefined device, restart

s5:

orl a, b ; add element selector

xrl a, #11110000b ; invert device selector

mov p2, a ; write strobe low

orl a, #11110000b ; reset device selector

mov p2, a ; write strobe high (latch data)

pop b

pop acc

ret

delay_ms:

; Delay for 1 ms times the value in the accumulator.

Microcontroller5-86

push acc

push b

mov b, #0

dd:

djnz b, $; 500 us @ 12 MHz

djnz b, $; 500 us @ 12 MHz

djnz acc, dd

pop b

pop acc

ret

delay_sec:

; Delay for 1 second times the value in the accumulator.

push acc

push b

mov b, a

ddd:

mov a, #250

call delay_ms ; 250 ms

call delay_ms ; 500 ms

call delay_ms ; 750 ms

call delay_ms ; 1000 ms

djnz b, ddd

pop b

pop acc

ret

END

Appendix 3: Code for AT89S8252 Programmer

NAME AT89S8252_Programmer

; The programmer powers up with the control signals to the target AT89S8252

; inactive, allowing the program in the target to run normally. Upon receipt

; of the first valid data record, the programmer puts the target into write

; mode. The first and subsequent valid records are dissected as they are

; received and their data is written into the target. Receipt of a valid

; end-of-file record terminates programming and resets the target control

; signals, allowing the new program in the target to run.

;

; Each record received is checked for validity. If it is invalid,

; the receiver sends a NAK to the remote system and discards the record.

; Bad records are not programmed into the target AT89S8252. Valid records

Microcontroller

5-87

; are programmed into the target AT89S8252 and verified. If verification

; succeeds, an ACK is sent to the remote system. If verification fails,

; the receiver sends CAN to abort the upload. Failure to verify is a fatal

; error. The target AT89S8252 will be left in program mode (held reset) so

; that the incomplete or invalid code which it contains cannot be executed.

;

; Incoming records must appear less than 30 seconds apart, or the line

; is dropped in preparation for the next call. If the remote system drops

; the line, the programmer will wait 30 seconds before resetting. Calls

; incoming during this time are ignored.

;

; The programmer manages five lines (SHUTDN, RST, SCK, MOSI, MISO)

; which control the target AT89S8252 and 4 lines which handle the modem

; interface. The AT89S8252 control lines occupy bits of port 1 and the

; modem interface lines bits of port 3, as defined in the EQUates.

;

; Procedures SHOUT (SHift OUT) and SHIN (SHift IN) manage the serial transfer

; of data between the programmer and the target AT89S8252. The serial clock

; is generated and timed by software. The code meets timing requirements

; when executed by an AT89Cx051 microcontroller with a 12-MHz clock.

; Code modifications may be required if a faster clock is substituted.

;

; Two long period timers are implemented utilizing Timer Zero and members of

; register bank one. Timer Zero is configured in 16-bit mode and is loaded

; with an initial count of zero, which yields the maximum delay of 65.5 ms

; (at 12 MHz). The timer is allowed to free-run, generating an interrupt

; each time the count rolls over from FFFF to 0000. At each interrupt, the

; counts in each of the long period timers are decremented if their respective

; overflow flags are not set. If the new count in either long timer is zero,

; the corresponding overflow flag is set. It is not necessary to stop Timer

; 0 or to disable interrupts to reload the long timers, because they will

; not be disturbed by the Timer 0 interrupt service routine whenever their

; overflow flags are set. Because Timer 0 free-runs, it is not possible to

; know where in a period timing of an event begins. Therefore, one additional

; count should be added to the calculated long timer count to guarantee that

; the timed interval is not short.

;

; Long timer 0 is 16 bits, allowing a maximum timed interval of

; over one hour. Long timer 1 is 8 bits, allowing a maximum timed

; interval of 16 seconds.

;

; The programmer software is compatible with the U.S. Robotics Sportster

; 14,400-baud external modem and may require modifications if used with other

; modems. The switches on the modem are set as follows:

Microcontroller5-88

;

; 1 UP DTR normal

; 2 DOWNNumeric result codes

; 3 DOWNDisplay result codes

; 4 DOWNSuppress command echo

; 5 UP Auto answer

; 6 UP CD normal

; 7 UP Load NVRAM defaults

; 8 DOWNSmart mode

;

; Modem switch 7 specifies that the power on and reset configuration be

; loaded from NVRAM profile zero, which must contain the factory default

; hardware flow control template. Other switch settings then override the

; loaded configuration. If NVRAM profile zero does not contain the hardware

; flow control template, it may be restored with the following command

; sequence:

;

; AT&F1&W0<ENTER>

;

; Some of the switch functions can be controlled by software, but making

; use of the switches simplifies the code required to initialize the modem.

; The only additional commands which must be issued to the modem are:

;

; &R1Ignore RTS,

; &A0Disable ARQ result codes.

;

; "&R1" causes the modem to forward incoming data to the programmer regardless

; of the state of RTS. "&A0" suppresses the extended protocol result codes.

; Note that suppression of the codes does not affect the connection. If it is

; desired to disable Error Control, issue the command "&M0".

CR EQU 0dh ; carriage return

LF EQU 0ah ; line feed

ACK EQU 6h ; responses to remote system

NAK EQU 15h ;

CAN EQU 18h ;

BAUD_1200 EQU 0e8h ; 1200 baud timer reload values

BAUD_2400 EQU 0f4h ; 2400 baud

BAUD_9600 EQU 0fdh ; 9600 baud

OK EQU '0' ; modem status codes

RINGING EQU '2' ;

CONNECT_1200 EQU '5' ;

CONNECT_2400 EQU '10' ;

CONNECT_9600 EQU '13' ;

Microcontroller

5-89

MTRIES EQU 5 ; max attempts to access modem

ERASE_1 EQU 0ach ; erase chip function, first byte

ERASE_2 EQU 04h ; second byte

ENABLE_1 EQU 0ach ; enable write function, first byte

ENABLE_2 EQU 53h ; second byte

DUMMY EQU 55h ; function third byte

WRITE_CODE EQU 02h ; write code memory function (Flash)

READ_CODE EQU 01h ; read code memory function

WRITE_DATA EQU 06h ; write data memory function (EEPROM)

READ_DATA EQU 05h ; read data memory function

lt0_lo EQU r2 ; long timer one low byte

lt0_hi EQU r3 ; long timer one high byte

lt1 EQU r4 ; long timer two only byte

index EQU r0 ; general purpose index register

chksum EQU r5 ; running checksum on record

temp EQU r6 ; temporary storage

kount EQU r7 ; loop counter

DSR_ BIT p3.3 ; modem control signals

DTR_ BIT p3.7 ;

RST BIT p1.7 ; target control signals

SHUTDN_ BIT p1.6 ;

SCK BIT p1.4 ; serial clock

MOSI BIT p1.3 ; serial data out

MISO BIT p1.2 ; serial data in

DSEG AT 20h

flags DATA 20h ; misc flags

LT0F BIT flags.0 ; long timer 0 overflow flag

LT1F BIT flags.1 ; long timer 1 overflow flag

ORG30h

rec_type: DS 1 ; record type

laddr_lo: DS 1 ; record load address, low byte

laddr_hi: DS 1 ; record load address, high byte

data_len: DS 1 ; record data byte count

data_buf: DS 32 ; storage for record data field

ORG 60h ; stack origin

stack: DS 20h ; stack depth

PCON DATA 87h ; address of Power Control register

; (added to enlighten the assembler)

CSEG

ORG 0000h ; power on/reset vector

jmp init

Microcontroller5-90

ORG 0003h ; external interrupt 0 vector

reti ; undefined

ORG 000Bh ; timer 0 overflow vector

jmp timer_int

ORG 0013h ; external interrupt 1 vector

reti ; undefined

ORG 001Bh ; timer 1 overflow vector

reti ; undefined

ORG 0023h ; serial I/O interrupt vector

jmp serial_int

ORG 40h ; begin constant data space

attn_cmd: DB '+++', 0 ; modem return to command mode

reset_cmd: DB 'ATZ', CR, 0 ; modem reset string

; must be last command on line and

; modem returns code before executing

init_cmd: DB 'AT&R1&A0', CR, 0 ; modem init string

hangup_cmd: DB 'ATH', CR, 0 ; modem on-hook string

ORG 0080h ; begin code space

USING 0 ; register bank 0

init:

mov sp, #(stack-1) ; initialize stack pointer

call initialize ; initialize controller registers

setb LT0F ; disable long timer 0

setb LT1F ; disable long timer 1

; Initialize the modem.

setb TI ; set transmit interrupt flag

; (kludge for first use)

setb ET0 ; enable timer 0 interrupt

call modem_init ; initialize modem

clr ET0 ; disable timer 0 interrupt

jnc m1 ; jump if modem init passes

clr EA ; global interrupt disable

orl PCON, #1 ; idle the controller, reset exits

m1:

; Clear pending interrupts before enabling serial interrupts.

jnb TI, $; wait for transmitter to clear

clr TI ; clear transmit interrupt flag

clr RI ; clear receive interrupt flag

setb ES ; enable serial ints to wake controller

clr F0 ; clear connect flag / PSW.5 bit

idle:

orl PCON, #1 ; idle the controller, serial int exits

jnb F0, idle ; return to idle if not connected

; Connection has been established.

Microcontroller

5-91

; Begin polling for valid record header.

clr ES ; disable serial interrupts

setb TI ; set transmit interrupt flag

; (kludge for first use)

clr F0 ; clear program mode flag

setb ET0 ; enable timer 0 interrupt

m2:

call init_longtimer0 ; start 30-second timer

m3:

call get_char ; get char, 1-second timeout

jc m8 ; try again if parity error or timeout

cjne a, #':', m8 ; try again if not record header

; Found header, process hex record.

call get_record ; load and dissect record

jnc m4 ; jump if record is good

mov a, #NAK ; tell sender record is bad

call send_char;

jmp m2 ; next record

m4:

cjne a, #0, m6 ; jump if record is not type zero

; Process record type zero (data).

jb F0, m5 ; jump if target is in write mode

call shutdown ; notify target of impending doom

; call erase_chip ; erase target

call set_pgm ; place target in write mode

setb F0 ; flag target in write mode

m5:

call write_record ; program data into target

call verify_record ; verify program data

jnc m7 ; jump if verify OK

mov a, #CAN ; tell sender to abort

call send_char;

jmp m9 ; hang up and reset for next call

m6:

; Process record type one (end-of-file).

call clear_pgm ; take target out of write mode

clr F0 ; flag target not in write mode

m7:

mov a, #ACK ; tell sender record OK

call send_char ;

jmp m2 ; next record

m8:

jnb LT0F, m3 ; poll until timer times out

m9: ; timer timed out or upload cancelled

Microcontroller5-92

call hang_up ; break the connection

clr ET0 ; disable timer 0 interrupt

jmp m1 ; return controller to idle

serial_int:

; Process serial interrupt. Interrupts due to transmit done are

; cleared and ignored. If interrupt is due to receive data ready,

; check for a modem connect code, and set the connect flag.

; The procedure includes code for identifying both single- and

; double-character connect codes, but both may not be active

; simultaneously. The code for identifying double-character

; connect codes is dependent on the receive baud rate.

; Serial interrupts are enabled elsewhere.

clr F0 ; clear connect flag

clr TI ; clear transmit interrupt flag

jnb RI, si2 ; exit if not receive data ready

mov a, SBUF ; get character into accumulator

mov c, p ; carry set for odd parity (error)

jc si1 ; ignore char if parity error

; Test for single-character 1200-baud connect code.

;; anl a, #7fh ; strip off parity (eighth) bit

;; cjne a, #CONNECT_1200, si1 ; ignore char if wrong code

; Test for double-character 9600-baud connect code.

anl a, #7fh ; strip off parity (eighth) bit

cjne a, #(HIGH CONNECT_9600), si1; ignore wrong char

clr RI ; reset receive flag

mov a, #2 ; expect next char in about 1 ms

call delay_ms ; wait for next char

jnb RI, si2 ; exit if not receive data ready

mov a, SBUF ; get character into accumulator

mov c, p ; carry set for odd parity (error)

jc si1 ; ignore char if parity error

anl a, #7fh ; strip off parity (eighth) bit

cjne a, #(LOW CONNECT_9600), si1; ignore wrong char

setb F0 ; set connect flag

si1:

clr RI ; reset receive flag

si2:

reti

timer_int:

; Process Timer Zero interrupt, which occurs about every 65.5 ms.

; Each long timer count is decremented if its overflow flag is clear.

; When a long timer count reaches zero, its overflow flag is set.

Microcontroller

5-93

; Counts are reloaded and overflow flags are reset elsewhere.

push psw ; save flags

setb RS0 ; select register bank one

jb LT0F, ti2 ; skip if long timer 0 overflow set

cjne lt0_lo, #0, ti1 ; test low byte

dec lt0_hi ; low byte is zero, borrow from high

ti1:

djnz lt0_lo, ti2 ; dec low byte, skip if not zero

cjne lt0_hi, #0, ti2 ; low byte is zero, test high byte

; both bytes equal zero

setb LT0F ; set overflow flag

ti2:

jb LT1F, ti3 ; skip if long timer 1 overflow set

djnz lt1, TI3 ; decrement count and skip if not zero

setb LT1F ; count is zero, set overflow flag

ti3:

pop psw ; restore flags and reg bank zero

reti

initialize:

; Initialize controller registers and I/O lines.

mov PCON, #0 ; initialize power control register

mov IE, #0 ; deactivate all interrupts

mov SCON, #01000000b; serial port mode 1

mov TMOD, #00100001b; timer 1 8-bit auto-reload,

; timer 0 16-bit

;; mov TH1, #BAUD_1200 ; timer 1 reload value

mov TH1, #BAUD_9600 ; timer 1 reload value

mov TCON, #01000000b; start timer 1

mov TL0, #0 ; set timer 0 to max count

mov TH0, #0 ;

setb TR0 ; start timer 0

setb REN ; enable serial reception

setb EA ; global interrupt enable

; Initialize I/O lines.

setb DTR_

setb SHUTDN_

setb MISO

setb MOSI

clr SCK

clr RST ; remove reset from target

ret

Microcontroller5-94

modem_init:

; Reset and initialize the modem.

; Return with carry set if modem fails to respond as expected.

clr DTR_ ; assert DTR to talk to modem

; First must ensure that the modem is in command mode.

mov a, #1 ; wait 1 second

call delay_sec ;

mov dptr, #attn_cmd ; point to attention string

call send_string ; transmit string

mov a, #1 ; wait 1 second

call delay_sec ;

; Reset modem, causing the switches to be read.

mov dptr, #reset_cmd ; point to reset string

call modem_cmd ; transmit string

jc nn1 ; jump on fail

mov a, #1 ; wait 1 second before next command

call delay_sec ;

; Modem is powered up and on-line.

; Send required software parameters.

mov dptr, #init_cmd ; point to init string

call modem_cmd ; transmit string

jnc nn2 ; jump on pass

nn1:

; Modem is misbehaving, so deactivate it.

; The controller must be reset to exit this state.

setb DTR_ ; deassert DTR to deactivate modem

nn2:

ret

hang_up:

; Force the modem to drop the line.

; First must return the modem to command mode.

mov a, #1 ; wait 1 second

call delay_sec ;

mov dptr, #attn_cmd ; point to attention string

call send_string ; transmit string

mov a, #1 ; wait 1 second

call delay_sec ;

; Issue command to hang up.

mov dptr, #hangup_cmd ; point to hang up string

call modem_cmd ; transmit string

jnc hh ; jump on pass

; The polite way didn't work, so drop DTR.

Microcontroller

5-95

; The controller must be reset to exit this state.

setb DTR_ ; force modem to drop the line

hh:

ret

modem_cmd:

; Transmit command string to modem and validate the response.

; Return with carry set if modem fails to respond as expected,

; or if excessive parity errors or receive timeouts occur.

; Valid responses consist of a byte code followed by a carriage

; return. Parity errors and timeouts cause the command to be

; resent. Expected delays for command responses are absorbed

; by GET_CHAR. On entry, DPTR must point to a null-terminated

; command string.

push b

mov b, #MTRIES ; number of attempts

mm1:

call send_string ; transmit command string

clr RI ; discard any waiting character

mm2:

call get_char ; receive result code

jc mm3 ; jump on parity error or timeout

cjne a, #OK, mm2 ; loop if response is not valid

call get_char ; receive carriage return

jc mm3 ; jump on parity error or timeout

cjne a, #CR, mm2 ; loop if response is not valid

; valid response complete

clr c ; clear error flag

jmp mm4 ; return

mm3:

djnzb, mm1 ; resend command

setb c ; out of retries, set error flag

mm4:

pop b

ret

send_string:

; Transmit string pointed to by DPTR.

; String may be of any length, but must be null-terminated.

push acc

push dpl

push dph

Microcontroller5-96

ss1:

clr a

movc a, @a+dptr ; get character

jz ss2 ; check for terminator

call send_char ; send character

inc dptr ; point to next character

jmp ss1

ss2:

pop dph

pop dpl

pop acc

ret

send_char:

; Wait for transmitter to clear, add even parity bit to character

; in accumulator and transmit it. Does not wait for transmitter

; to clear before returning.

jnb TI, $; wait here for transmitter to clear

clr TI ; clear transmit flag

push acc ; save char

movc, p ; get parity bit

mov acc.7, c ; add parity bit to data

mov SBUF, a ; load character into transmitter

pop acc ; restore char

ret

get_char:

; Read a character from the serial port and check for even parity.

; Return the character in the accumulator with parity stripped off.

; The routine will wait for approximately 1 second before timing

; out. Return with carry set on parity error or timeout.

jb RI, gc2 ; jump if char is waiting

call init_longtimer1 ; start 1-second timer

gc1:

jb RI, gc2 ; exit loop when char received

jnb LT1F, gc1 ; loop until timer times out

setbc ; set error flag

jmp gc3 ; return

gc2:

mov a, SBUF ; get character into accumulator

mov c, p ; carry set for odd parity (error)

anl a, #7fh ; strip off parity (eighth) bit

Microcontroller

5-97

clr RI ; reset receive flag

gc3:

ret

get_byte:

; Read two hexadecimal ASCII characters from the serial port

; and return their binary equivalent in the accumulator.

; Return with carry set if either character was invalid or

; contained a parity error.

call get_char ; get first char from serial port

jc gb ; exit on parity error

call ascii2bin ; convert hex to binary

jc gb ; exit on invalid char

swap a ; first hex digit times 16

mov b, a ; save value

call get_char ; get second char from serial port

jc gb ; exit on parity error

call ascii2bin ; convert hex to binary

jc gb ; exit on invalid char

orl a, b ; combined binary equivalent

gb:

ret

ascii2bin:

; Convert hexadecimal digit in the accumulator to its binary

; equivalent and return it in the accumulator. Valid hex digits

; are 0..9 and A..F (upper case only). Return with carry set

; if the character received is not a valid hex digit.

mov temp, a ; save char

clr c ; prepare for subtraction

subb a, #('9'+1) ; compare to '9'

jnc a1 ; jump if char above '9'

mov a, temp ; get original char

clr c ; prepare for subtraction

subb a, #'0' ; compare to '0'

jmp a4 ; return error if char below '0'

; else binary value in accumulator

a1:

mov a, temp ; get original char

subb a, #('F'+1) ; compare to 'F'

cpl c ; invert error flag

jc a4 ; return error if char is above 'F'

Microcontroller5-98

a2:

mov a, temp ; get original char

subb a, #'A' ; compare to 'A'

jc a4 ; return error if char is below 'A'

a3:

add a, #10 ; adjust binary value

a4:

ret

get_record:

; Read and dissect record. Two record types are accepted: data and

; end-of-file. If the record type is data, the appropriate values

; are extracted and stored. If the record type and checksum are

; valid, the carry bit is cleared and the record type is returned

; in the accumulator. Return with carry set to signal an invalid

; record type, checksum error, or other problem. Errors returned

; by routine GET_BYTE (invalid char or parity) cause an immediate

; return with carry set.

mov chksum, #0 ; clear running checksum

call get_byte ; get record data length field

jc rr4 ; jump on error

mov data_len, a ; save data length

clr c ; prepare for subtraction

subb a, #(16+1) ; data length limited to 16 bytes

jnc rr4 ; jump if max size exceeded

call get_byte ; get high byte of load address field

jc rr4 ; jump on error

mov laddr_hi, a ; save it

call get_byte ; get low byte of load address field

jc rr4 ; jump on error

mov laddr_lo, a ; save it

call get_byte ; get record type field

jc rr4 ; jump on error

mov rec_type, a ; save type

cjne a, #0, rr2 ; jump if not type zero (data)

; Process data in data type record.

mov index, #data_buf ; pointer to data buffer

mov kount, data_len ; byte counter

rr1:

call get_byte ; get data from serial port

jc rr4 ; jump on error

mov @index, a ; save data in buffer

add a, chksum ; update checksum

Microcontroller

5-99

mov chksum, a ;

inc index ; point to next location

djnz kount, rr1 ; decrement byte count and loop

jmp rr3 ; done with data, do checksum

rr2:

mov a, rec_type ; get record type

cjne a, #1, rr4 ; jump if not type one (end-of-file)

rr3:

; Process checksum.

call get_byte ; get record checksum

jc rr4 ; jump on error

add a, chksum ; update running checksum

add a, data_len ;

add a, laddr_lo ;

add a, laddr_hi ;

add a, rec_type ;

jnz rr4 ; jump if record checksum is not zero

; Discard CR/LF which terminates record.

; call get_byte

; jc rr4 ; jump on error

; call get_byte

; jc rr4 ; jump on error

mov a, rec_type ; return record type in accumulator

clr c ; no errors

jmp rr5 ; return

rr4:

; Error: data field too large, invalid type or bad checksum.

setb c ; set error flag

rr5:

ret

write_record:

; Write the data extracted from the most recently received record

; into the target AT89S8252. Timing delays are enforced by software.

; This routine assumes that the target has already been prepared

; for programming. Returns nothing.

mov r2, laddr_lo ; save low byte of load address

mov r3, laddr_hi ; save high byte of load address

mov a, r3 ; get high byte of load address

anl a, #00011111b ; isolate 5 bits

rl a ; move 5 bits to top

rl a ;

rl a ;

Microcontroller5-100

orl a, #WRITE_CODE ; specify code write function

mov temp, a ; save adjusted high byte

mov index, #data_buf ; pointer to data buffer

mov kount, data_len ; byte counter

pp1:

mov a, temp ; send adjusted high byte of address

call shout ;

mov a, r2 ; send low byte of address

call shout ;

mov a, @index ; send data from buffer

call shout ;

mov a, #3 ; wait 3 ms

call delay_ms

; Next address.

mov a, r2 ; get low byte of address

add a, #1 ; increment low byte

movr2, a ; save incremented value

jnc pp2 ; jump if no carry out of low byte

; carry out of low byte

mov a, r3 ; get high byte of address

add a, #1 ; increment high byte

mov r3, a ; save incremented value

anl a, #00011111b ; isolate 5 bits

rl a ; move 5 bits to top

rl a ;

rl a ;

orl a, #WRITE_CODE ; specify code write function

mov temp, a ; save adjusted high byte

pp2:

; Next data.

inc index ; point to next buffer location

djnz kount, pp1 ; decrement byte count and loop

ret

verify_record:

; Verify the data extracted from the latest record against that

; written into the target AT89S8252. Timing delays are enforced by

; software. This routine assumes that the target has already been

; prepared for programming. Return with carry set if verify fails.

mov r2, laddr_lo ; save low byte of load address

mov r3, laddr_hi ; save high byte of load address

mov a, r3 ; get high byte of load address

anl a, #00011111b ; isolate 5 bits

Microcontroller

5-101

rl a ; move 5 bits to top

rl a ;

rl a ;

orl a, #READ_CODE ; specify code read function

mov temp, a ; save adjusted high byte

mov index, #data_buf ; pointer to data buffer

mov kount, data_len ; byte counter

vv1:

mov a, temp ; send adjusted high byte of address

call shout ;

mov a, r2 ; send low byte of address

call shout ;

; Read data and verify.

call shin ; read data

mov b, @index ; get record data

cjne a, b, vv2 ; jump on verify fail

jmp vv3 ; verify OK, do next address

vv2:

setb c ; set error flag

jmp vv5 ; return

vv3:

; Next address.

mov a, r2 ; get low byte of address

add a, #1 ; increment low byte

mov r2, a ; save incremented value

jnc vv4 ; jump if no carry out of low byte

; carry out of low byte

mov a, r3 ; get high byte of address

add a, #1 ; increment high byte

mov r3, a ; save incremented value

anl a, #00011111b ; isolate 5 bits

rl a ; move 5 bits to top

rl a ;

rl a ;

orl a, #READ_CODE ; specify code write function

mov temp, a ; save adjusted high byte

vv4:

; Next data.

inc index ; point to next buffer location

djnz kount, vv1 ; decrement byte count and loop

clr c ; clear error flag

vv5:

ret

Microcontroller5-102

shout:

; Shift out a byte, most significant bit first.

; SCK expected low on entry. Return with SCK low.

; Called with data to send in A.

push b

mov b, #8 ; bit counter

x42:

rlc a ; move bit into CY

mov MOSI, c ; output bit

nop ; enforce data setup

nop ;

setb SCK ; raise clock

nop ; enforce SCK high

nop ;

nop ;

nop ;

clr SCK ; drop clock

djnz b, x42 ; next bit

pop b

ret

shin:

; Shift in a byte, most significant bit first.

; SCK expected low on entry. Return with SCK low.

; Returns received data byte in A.

push b

mov b, #8 ; bit counter

x43:

setb SCK ; raise clock

mov c, MISO ; input bit

rlc a ; move bit into byte

nop ; enforce SCK high

nop ;

clr SCK ; drop clock

nop ; enforce SCK low

nop ;

djnz b, x43 ; next bit

pop b

ret

erase_chip:

; Erase target AT89S8252.

Microcontroller

5-103

setb RST ; force target into reset

mov a, #ERASE_1 ; send first byte of erase function

call shout ;

mov a, #ERASE_2 ; send second byte

call shout ;

mov a, #DUMMY ; send third byte

call shout ;

mov a, #10 ; wait 10 milliseconds

call delay_ms ;

clr RST ; remove reset from target

ret

shutdown:

; Force target to abandon execution of its internal program.

clr SHUTDN_ ; notify target of impending reset

mov a, #5 ; give target 5 ms to shut down

call delay_ms ;

setb SHUTDN_ ; deassert interrupt

ret

set_pgm:

; Prepare the target AT89S8252 for programming.

setb RST ; force target into reset

mov a, #1 ; wait 1 ms (arbitrary)

call delay_ms ;

; Enable writes to code and data memory.

mov a, #ENABLE_1 ; send first byte of enable code

call shout ;

mov a, #ENABLE_2 ; send second byte

call shout ;

mov a, #DUMMY ; send third byte

call shout ;

ret

clear_pgm:

; Allow target AT89S8252 to resume execution of its own program.

clr RST ; remove reset from target

ret

init_longtimer0:

; Load and start long timer 0.

Microcontroller5-104

; System Timer 0 count loaded and interrupt enabled elsewhere.

setb LT0F ; disable counter

setb RS0 ; select register bank one

mov lt0_lo, #0c8h ; load 30-second count

mov lt0_hi, #1 ;

clr RS0 ; back to bank zero

clr LT0F ; enable counter

ret

init_longtimer1:

; Load and start long timer 1.

; System Timer Zero count loaded and interrupt enabled elsewhere.

setb LT1F ; disable counter

setb RS0 ; select register bank one

mov lt1, #17 ; load 1-second count

clr RS0 ; back to bank zero

clr LT1F ; enable counter

ret

delay_ms:

; Delay for 1 ms times the value in the accumulator.

push acc

push b

mov b, #0

dd:

djnz b, $; 500 us @ 12 MHz

djnz b, $; 500 us @ 12 MHz

djnz acc, dd

pop b

pop acc

ret

delay_sec:

; Delay for 1 s times the value in the accumulator.

push acc

push b

mov b, a

ddd:

mov a, #250

call delay_ms; 250 ms

call delay_ms; 500 ms

Microcontroller

5-105

call delay_ms; 750 ms

call delay_ms; 1000 ms

djnz b, ddd

pop b

pop acc

ret

END

Microcontroller5-106

Appendix 4: ASPECT Script for Procomm Plus
; PROCOMM ASPECT script to read and transmit an Intel hex file.

; The script does not set up communications parameters, initialize the

; modem, dial out or establish a connection with the receiver; this is

; done manually via the PROCOMM Connection Directory.

; Each record in the hex file is terminated by a CR/LF. The receiver is

; expected to respond with an ACK after each record is validated and

; programmed into the target processor. If the receiver cannot validate

; the record, it responds with a NAK. If the receiver cannot verify the

; record data after programming the target processor, it responds with

; a CAN, which tells the transmitter to abort the upload. The transmitter

; waits 2 seconds between records for a response. If a response is not

; received in the allowed interval, or if the response is other than an

; ACK or a CAN, the record is retransmitted.

#define ACK 6 ; ^F

#define NAK 21 ; ^U

#define CAN 24 ; ^X

#define MAXRETRIES 4

proc main

string filename, record

integer retry, rxcode

sdlgfopen "Select HEX File" "*.hex" single filename; get file name

if failure ; get file name failed

exit

endif

if filename ; validate path and file name

if fopen 0 filename read; open file for read

fgets 0 record; read record

else

errormsg "FILE OPEN FAILED"

exit

endif

else

errormsg "FILE DOES NOT EXIST"

exit

endif

set aspect rxdata on ; script processes receive data

while not feof 0 ; check for EOF

termwrites record ; show record

rxflush ; purge pending receive data

transmit record raw ; send record including CR/LF

comgetc rxcode 2 ; wait max 2 seconds for answer

call show_rxcode with rxcode ; show received code

retry = 0 ; initialize counter

Microcontroller

5-107

while (rxcode != ACK) && (retry < MAXRETRIES)

if (rxcode == CAN); abort ordered by remote

errormsg "UPLOAD ABORTED BY REMOTE"

fclose 0; close file

set aspect rxdata off

exit

endif

termwrites "Resending record^M^J"

termwrites record; show record

rxflush ; purge pending receive data

transmit record raw ; send record

comgetc rxcode 2 ; get response

call show_rxcode with rxcode; show received code

++retry ; advance counter and try again

endwhile

if (rxcode != ACK)

errormsg "EXCESSIVE RETRIES: UPLOAD ABORTED"

fclose 0 ; close file

set aspect rxdata off

exit

endif

fgets 0 record; read next record

endwhile

termwrites "End of file^M^J"

fclose 0 ; close file

set aspect rxdata off

exit

endproc

proc show_rxcode

param integer rxcode

; termmsg "%#X`r`n", rxcode

switch rxcode

case -1

termwrites "Timed out^M^J"

endcase

case ACK

termwrites "Received ACK^M^J"

endcase

case NAK

termwrites "Received NAK^M^J"

endcase

case CAN

termwrites "Received CAN^M^J"

endcase

Microcontroller5-108

default

termwrites "Received garbage^M^J"

endcase

endswitch

endproc

Microcontroller

5-109

Figure 4. FTP Transmit Mode

Microcontroller5-110

Figure 5. FTP Receive Mode

