Migrating from AT89S8252/S53 to AT89S8253

New Features

- 64-byte User Signature Array
- Enhanced UART with Frame Detection and Automatic Address Recognition
- Enhanced SPI (Double Write/Read Buffered) Serial Interface
- Page Mode in both Parallel/Serial Programming Modes (Code/Data Memories)
- Four-level Enhanced Interrupt Controller
- Programmable and Fuseable x2 Clock Option
- Internal Power-on Reset
- 42-pin PDIP Package Option for Reduced EMI Emission
- EEPROM Page Write Access during CPU Execution

1. Introduction

The purpose of this application note is to help users convert existing designs from AT89S8252/S53 to AT89S8253. The given information will also help migration from AT89LS8252/LS53 to AT89S8253. This application note describes AT89S8253 memory sizes, features, and SFR mapping. More detailed information can be found in the AT89S8253 datasheet.

2. Memory Sizes

The following table shows a comparison of the individual memories.

Memory	AT89S8252	AT89S53	AT89S8253
Flash	8K Bytes	12K Bytes	12K Bytes
RAM	256 Bytes	256 Bytes	256 Bytes
EEPROM	2K Bytes	N/A	2K Bytes

3. 64-byte User Signature Array

Sixty-four bytes are accessible to the user to program their own desired data. Bytes can be either programmed by parallel or serial mode.

Flash Microcontrollers

Application Note

3449E-MICRO-10/05

4. Enhanced UART with Frame Error Detection and Automatic Address Recognition

When used for frame error detection, the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the SCON Register. Automatic Address Recognition allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparison.

5. Enhanced SPI (Double Write/Read Buffered) Serial Interface

The enhanced SPI mode allows the write buffer to hold the next byte to be transmitted. As long as the CPU can keep the write buffer full, multiple bytes may be transferred with minimal latency between bytes.

6. Page Mode in both Parallel/Serial Programming Modes (Code/Data Memories)

Program and data memories can be programmed in page mode (1 code page = 64 bytes; data page = 32 bytes).

Page mode is available in both the parallel and serial programming modes.

7. Four-level Enhanced Interrupt Controller

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing a bit in the Interrupt Priority (IP) register and in the Interrupt Priority High (IPH) register.

The Interrupt Priority High register shows the bit values and priority levels associated with each combination.

8. Programmable and Fuseable x2 Clock Option

The x2 clock option allows the microcontroller to execute one machine cycle in 6 clock periods instead of 12 clock periods. This can be set either through hardware or software.

9. Internal Power-On Reset

A 1 ms internal reset signal will be generated after power-on, eliminating the need for any external Power-on reset circuitry.

10. 42-pin PDIP Package Option for Reduced EMI Emission

The 42-pin package has extra pins PWRVDD and PWRGND to reduce EMI Emission. PWRVDD must be connected to the application board supply voltage. PWRGND must be connected to the application board GND.

11. EEPROM Page Write during CPU Execution

During CPU execution, EEPROM can be written one page (32 bytes) at a time. This way, 32 bytes will only require 4 ms of programming time instead of 128 ms required in single byte programming. During program execution mode (using the MOVX instruction) there is an autoerase capability at the byte level. This is useful, for example, when the user wants to update or modify a single EEPROM byte location in real-time without affecting any other bytes.

2 Migrating from AT89S8252/S53 to AT89S8253 i

12. Operational V_{CC} Voltage Range

While the AT89S8252/S53 are offered in low-voltage versions as AT89LS8252/LS53, respectively, the AT89S8253 nomenclature encompasses both the regular (4.0V to 5.5V) and low-voltage (2.7V to 4.0V) operational V_{CC} voltage ranges. The ordering is designated by the appropriate operational frequency range. Please consult the Ordering Information table in the AT89S8253 device datasheet.

13. Clock Loading

Due to its low power consumption capability, the internal clock design of the AT89S8253 has a different set of clock loading requirements. Refer to the device datasheet for the recommended C1, C2 load range.

14. SFRs Mapping

The highlighted SFR locations are new registers for the AT89S8253 device.

0F8H									0FFH
0F0H	В								0F7H
0E8H									0EFH
0E0H	ACC								0E7H
0D8H									0DFH
0D0H	PSW					SPCR			0D7H
0C8H	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2			0CFH
0C0H									0C7H
0B8H	IP	SADEN							0BFH
0B0H	P3							IPH	0B7H
0A8H	IE	SADDR	SPSR						0AFH
0A0H	P2						WDTRST	WDTCON	0A7H
98H	SCON	SBUF							9FH
90H	P1						EECON		97H
88H	TCON	TMOD	TL0	TL1	TH0	TH1	AUXR	CLKREG	8FH
80H	P0	SP	DP0L	DP0H	DP1L	DP1H	SPDR	PCON	87H

15. Fuse Table

Fuse	AT89S8252	AT89S53	AT89S8253
SerialProg	Yes	Yes	Yes
x2 Clock	No	No	Yes
UserRowProg	No	No	Yes

16. Programming Time (Byte Mode)

Part Number	Flash (Reset = High)	EEPROM (Reset = High)	EEPROM Reset = Low (CPU Execution)
AT89S8252	12 sec	2.7 sec	5.12 sec
AT89S53	16 sec	N/A	N/A
AT89S8253	N/A	N/A	N/A

17. Programming Time (Page Mode)

Part Number	Flash (Reset = High)	EEPROM (Reset = High)	EEPROM Reset = Low (CPU Execution)
AT89S8252	N/A	N/A	N/A
AT89S53	N/A	N/A	N/A
AT89S8253	0.96 sec	0.32 sec	0.256 sec

18. Parallel and Serial Mode Programming Differences

For serial programming, the AT89S8252/S53 uses a 3-byte serial protocol, while the AT89S8253 uses a 4-byte protocol. In addition, serial input on MOSI is sampled by SCK during its **negative** transition edge. Users of third-party programmers should download the AT89S8253 driver for their particular programmer.

In both parallel/serial programming modes, there is no auto-erase capability (unlike the AT89S8252/S53 devices) for either the Flash program or EEPROM data memory. If the user needs to reprogram any location which had been previously programmed, a Chip Erase operation is required.

For parallel programming, the AT89S8252/S53 uses P2.6, P2.7, P3.6, and P3.7 as control signals for parallel mode programming. Users should be aware that the AT89S8253 uses P3.3, P3.4, P3.5, P3.6, and P3.7 as control signals for parallel mode programming.

18.1 RDY/BSY Differences

18.1.1 Program Flash

The AT89S8252/S53 uses P3.4 as a RDY/BSY pin to indicate the progress of byte programming in the parallel programming mode.

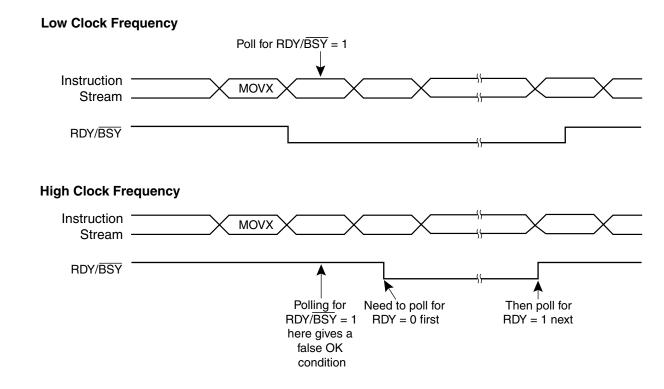
The AT89S8253 uses P3.0 as a RDY/BSY pin to indicate the progress of byte programming in the parallel programming mode.

4 Migrating from AT89S8252/S53 to AT89S8253 i

18.2 EEPROM Differences

Below is sample code that writes one page of data to EEPROM:

EEMWE	EQU	00010000B	;EEPROM data memory write enable
EEMEN	EQU	00001000B	;internal EEPROM access enable
EELD	EQU	0010000B	;EEPROM memory load enable bit
ORL	EECOI	N,#EEMEN	;enable EEPROM accesses
ORL	EECOI	N,#EEMWE	;enable EEPROM writes
ORL	EECOI	N,#EELD	;enable EEPROM page load
MOV	R7,#1	lfh	;0x1FH = 31
PAGELO	AD:		
MOV	A,#05	55Н	;byte loaded into Accumulator
MOVX	@dpti	R,A	;Load byte to data buffer
INC	DPTR		;increment DPTR(EEPROM address)
DJNZ	R7,P2	AGELOAD	;check if 31 bytes have been loaded
;LOAD	LAST	BYTE AND INITI	LATE PAGE WRITE
MOV	A,#05	55H	;byte loaded into Accumulator
XRL	EECOI	N,#EELD	;the next will MOVX will start the write cycle
MOVX	@DPTH	R,A	;Load byte to data buffer


At higher frequencies (i.e. $F \ge 16 \text{ MHz}$), if polling the RDY/BSY bit during AT89S8253 EEPROM writes, it becomes necessary to poll for both the start and the end of the EEPROM write cycle. The sample code below illustrates this (see Figure 18-1 on page 6):

WRITESTART:	;Wait for write cycle to start (RDY/ $\overline{\rm BSY}{=}1{\rm ow})$
MOV VAR,096H	;096H is the EECON SFR
JB VAR.1,Writestart	
WAIT:	;Wait until write cycle is finished
MOV VAR,096H	
JNB VAR.1,Wait	

Figure 18-1. Data EEPROM Polling Sequence

18.3 Register Differences

The following highlights register differences and their corresponding bits in the AT89S8252/S53 and AT89S8253.

	AT89S8252		AT89S8253		
Register	Address		Register	Address	
		EECON	96H	EELD EEMWE EEMEN DPS RDY/BSY WRTINH	
WMCON	96H	PS2 PS1 PS0 EEMWE EEMEN DPS WDTRST WDTEN		A7H	PS2 PS1 PS0 WDIDLE DISRTO HWDT WSWRST WDTEN
SPSR	AAH	SPIF WCOL	SPSR	AAH	SPIF WCOL LDEN DISSO ENH

AT89S53		AT89S8253			
Register	Address		Register	Address	
			EECON	96H	EELD EEMWE EEMEN DPS RDY/BSY WRTINH
WCON			WDTCON	A7H	PS2 PS1 PS0 WDIDLE DISRTO HWDT WSWRST WDTEN
SPSR	AAH	SPIF WCOL	SPSR	AAH	SPIF WCOL LDEN DISSO ENH

6 Migrating from AT89S8252/S53 to AT89S8253

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

