
Bsp. einer Symmetriegruppe: Gleichseitiges Dreieck

6 Elemente

- 3 Drehungen (um 0°, 120°, 140°)
- 3 Spiegelungen

¤	D0	D120	D240	Sp1	Sp2	Sp3
D0	D0	D120	D240	Sp1	Sp2	Sp3
D120	D120	D240	D0	Sp2	Sp3	Sp1
D240	D240	D0	D120	Sp3	Sp1	Sp2
Sp1	Sp1	Sp3	Sp2	D0	D240	D120
Sp2	Sp2	Sp1	Sp3	D120	D0	D240
Sp3	Sp3	Sp2	Sp1	D240	D120	D0

Klassifikation der Kristallstrukturen

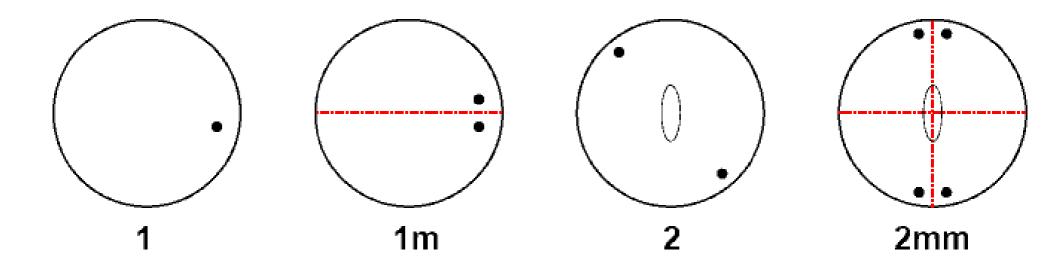
Die Symmetrieelemente eines Kristalls bilden Gruppe.

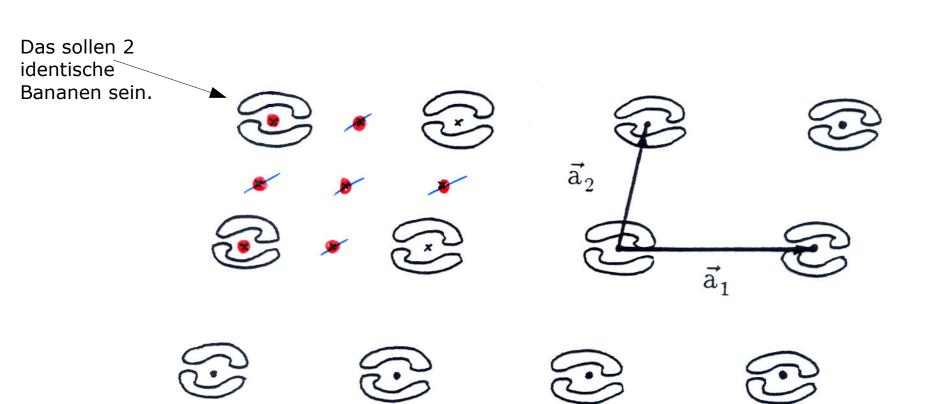
Translationen

Punktoperationen

Kombinationen davon

Punktoperationen (lassen einen Gitterpunkt fest)

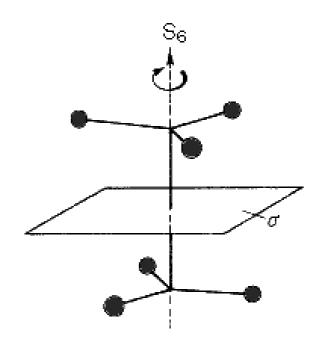

Drehachse mit Zähligkeit \mathbf{n} (Drehung um $2\pi/n$)


Inversionszentrum i

Spiegelebene *m*

Drehspiegelachse (kann auch ohne *n* und *m* existieren!)

Drehinversionszentrum (kann auch ohne *n* und *i* existieren!)



Vierzählige Drehinversion (ohne *i*)

Sechszählige Drehspiegelachse

Klassifikation der Kristallstrukturen

Alle Symmetrieelemente eines Kristalls bilden Gruppe.

Punktoperationen auf Gitter mit kugelsymmetrischer Basis

7 Kristallsysteme

Alle Operationen auf Gitter mit kugelsymmetrischer Basis

14 Bravaisgitter

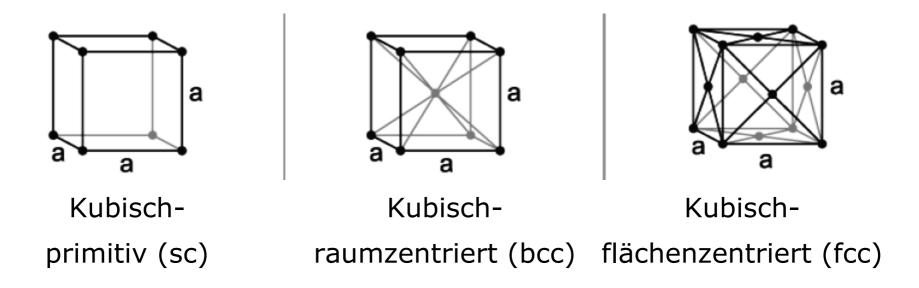
Punktoperationen auf Gitter mit beliebiger Basis

32 kristallographische Punktgruppen

Alle Operationen auf Gitter mit beliebiger Basis

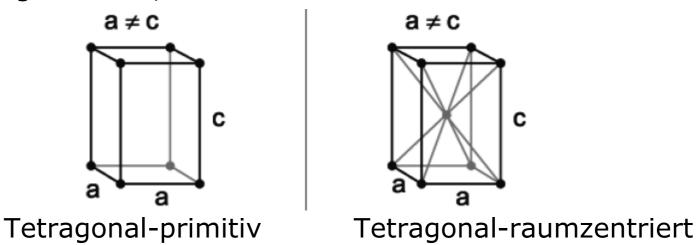
230 kristallographische Raumgruppen

	Bravaisgitter	Kristallstruktur
	(sphärische Basis)	(beliebige Basis)
Punktgruppen	7 Kristallsysteme	32 kristallograph. Punktgruppen
Raumgruppen	14 Bravaisgitter	230 Raumgruppen

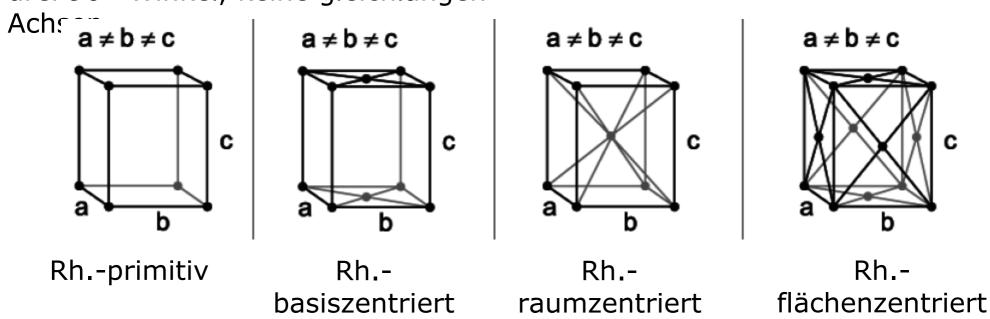

Bravaisgitter

Kristallsystem (kristallographisch)	Basisvektoren bzw. Kristallachsen	Winkel	Anzahl Raumgitter
triklin	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	1
monoklin	a ≠ b ≠ c	$\alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ}$	2
orthorhombisch	a ≠ b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$	4
tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	2
hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	1
rhomboedrisch	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	1
kubisch	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	3

Kubisches Kristallsystem

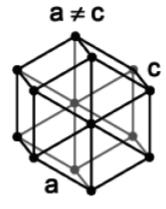

Punktgruppe wie Würfel

höchste Symmetrie, drei gleich lange, rechtwinklige Achsen

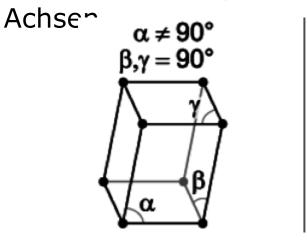

Tetragonales Kristallsystem

zwei gleichlange Achsen, drei 90°-Winkel

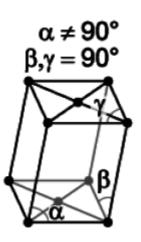
(ortho) Rhombisches Kristallsystem


drei 90°-Winkel, keine gleichlangen

Hexagonales Kristallsystem

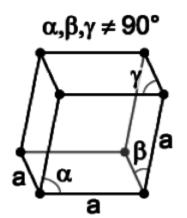

zwei gleichlange Achsen mit 120°-Winkel, dritte Achse senkrecht

dazu



Monoklines Kristallsystem

zwei 90°-Winkel, keine gleichlangen



M.-basiszentriert

Trigonales o. rhomboedrisches System drei gleichlange Achsen, drei gleiche Winkel ungleich 90°

Triklines Kristallsystem
keine Winkel oder Achsen
geringste Symmetrie aller Gitter

$$\alpha,\beta,\gamma \neq 90^{\circ}$$

ELEMENTS WITH RHOMBOHEDRAL (TRIGONAL) BRAVAIS LAT-TICES*

ELEMENT	a (Å)	θ	ATOMS IN PRIMITIVE CELL	BASIS
Hg (5 K)	2.99	70°45′	1	x = 0
As	4.13	54°10′	2	$x = \pm 0.226$
Sb	4.51	57°6′	2	$x = \pm 0.233$
Bi	4.75	57°14′	2	$x = \pm 0.237$
Sm	9.00	23°13′	3	$x = 0, \pm 0.222$

The common length of the primitive vectors is a, and the angle between any two of them is θ . In all cases the basis points expressed in terms of these primitive vectors have the form $x(a_1 + a_2 + a_3)$. Note (Problem 2(b)) that arsenic, antimony, and bismuth are quite close to a simple cubic lattice, distorted along a body diagonal.

ELEMENTS WITH TETRAGONAL BRAVAIS LATTICES®

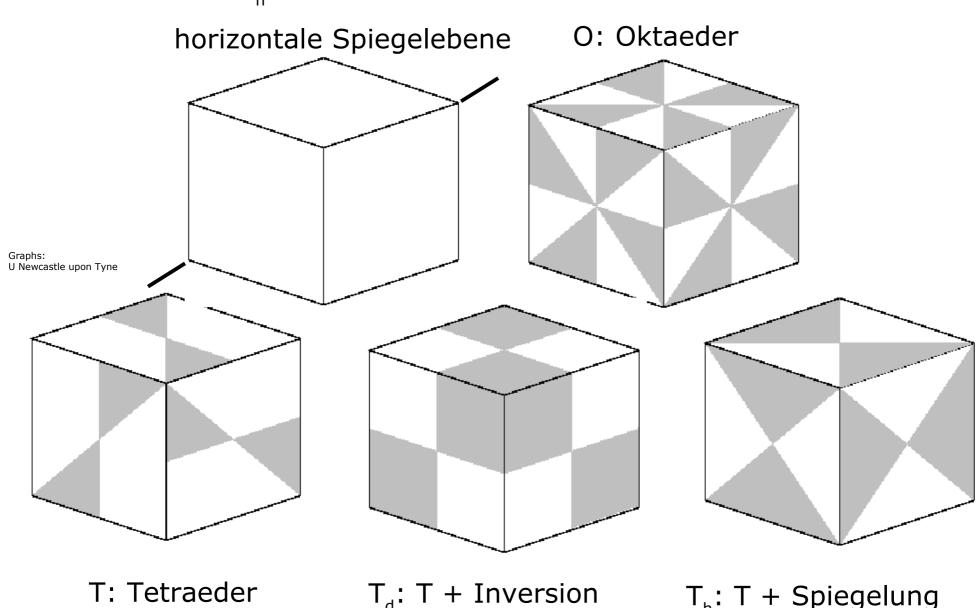
ELEMENT	a (Å)	c (Å)	BASIS
In	4.59	4.94	At face-centered positions of the conventional cell
Sn (white)	5.82	3.17	At 000, $0 frac{1}{2} frac{1}{2}$, $\frac{1}{2} frac{1}{2} frac{1}{2} frac{1}{2} frac{1}{2}$, with respect to the axes of the conventional cell

^a The common length of two perpendicular primitive vectors is a, and the length of the third, perpendicular to these, is c. Both examples have centered tetragonal Bravais lattices, indium with a one-atom and white tin with a two-atom basis. However, both are more commonly described as simple tetragonal with bases. The conventional cell for indium is chosen to stress that it is a slightly distorted (along a cube edge) fcc structure. The white tin structure can be viewed as a diamond structure compressed along one of the cube axes.

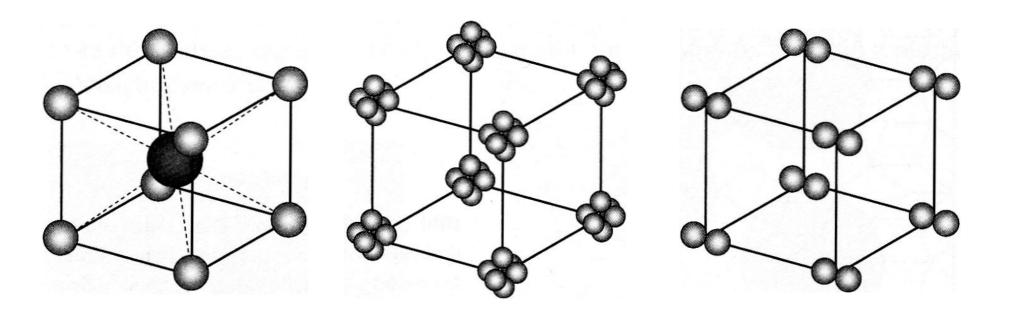
ELEMENTS WITH ORTHORHOMBIC BRAVAIS LATTICES®

ELEMENT	a (Å)	b (Å)	c (Å)
Ga	4.511	4.517	7.645
P (black)	3.31	4.38	10.50
CI (113 K)	6.24	8.26	4.48
Br (123 K)	6.67	8.72	4.48
I	7.27	9.79	4.79
S (rhombic)	10.47	12.87	24.49

^a The lengths of the three mutually perpendicular primitive vectors are a, b, and c. The structure of rhombic sulfur is complex, with 128 atoms per unit cell. The others can be described in terms of an eight-atom unit cell. For details the reader is referred to Wyckoff.


Punktsymmetrie der Basis: Schönflies - Nomenklatur

hier: Kubische kristallographische Punktgruppen


(Punktoperationen auf Gitter bei beliebiger Basis)

 T_h : T + Spiegelung

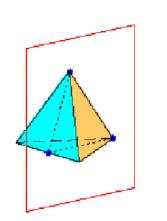
O_h: Oktaeder +

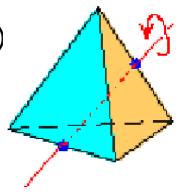
Kubische Elementarzellen mit unterschiedlichen Basen

mit kubischer Symmetrie verträglich

nicht zum kubischen Kristallsystem gehörig

Aus: Hunklinger


Tetraedergruppe: 24 Elemente


Untergruppe der Oktaedergruppe (Würfelgruppe)

- * 12 Drehungen
 - o identische Abbildung
 - o 4 3-zählige Achsen

(durch Ecke und Mittelpunkt der gegenüberliegenden Fläche, 2 Möglichkeiten für den Drehsinn)

o 3 2-zählige Achsen (durch Mittelpunkte zweier gegenüberliegender Kanten)

- * 6 Ebenenspiegelungen
- * 6 Drehspiegelungen (90°-Drehung gefolgt von Ebenenspiegelung)

Oktaedergruppe: 48 Elemente

- * 90°, 180°, 270°-Drehung um die 3 4-zähligen Drehachsen (durch gegenüber liegende Ecken)
- * 120°, 240°-Drehung um die 4 3-zähligen Drehachsen (durch gegenüber liegende Flächenmittelpunkte)
- * 180°-Drehung um die 6 2-zähligen Drehacksen (durch gegenüber liegende Kant nmit elpunkte)
- * die Identität

 $3 \times 3 + 4 \times 2 + 6 + 1 = 24$ Elemente der Drehgruppe, kombiniert mit Spiegelurgen: $2 \times 24 = 48$ Elemente der Symmetriegruppe.

Id + Drehungen:

#(O) = 24: 4-zählige Achsen ... a 3-zählige Achsen ... b 2-zählige Achsen ... c В Ouelle: Otto RÖSCHEL Vortrag Strobl TU Graz

В

b

M

Spiegelebene ...z.B.: [MBC] \rightarrow O_b mit #(O_b) = 48

Punktsymmetrie der Basis

Nicht-kubische Punktgruppen

C_n n-fache Drehachse

C_{nv} dazu noch m (enthält Achse)

+ die sich ergebenden m

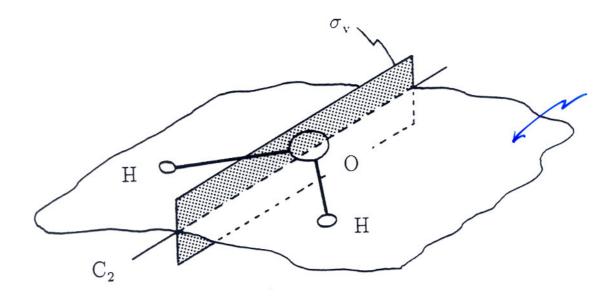
 C_{nh} n-fache Achse + dazu \perp m

S_n n-fache Drehspiegelachse

D n-fache Drehachse

+ 2fache ⊥ dazu

+ sich ergebende 2-fache


 $D_{nh} D_n + m \perp zur n$ -Achse

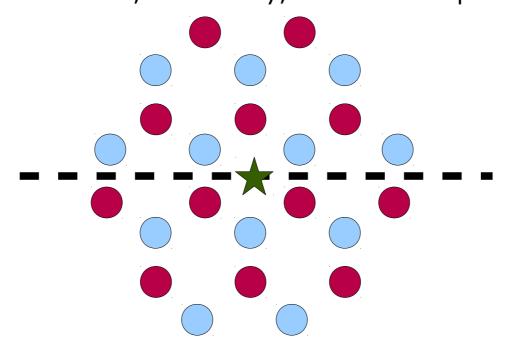
 $D_{nd} D_n + m$, die Winkel

zwischen n und 2 halbiert

c)yclisch h)orizontal d)iagonal v)ertikal S)piegel

	SCHOEN- FLIES		TETRAGONAL		ORTHO- RHOMBIC	MONOCLINIC	TRICLINIC
	C _m	· []		C ₃		C ₂	G O
	C _N ,	C60 6mm	C4.	C ₃ ,	C21,		
	Cad	C6A 67 m	Cas	il.		C ₂₄	
	-	C _{3A}				C _{1.k} (2)	
	Sn			$\bigcup_{(C_{3\ell})}^{S_4}$			S_1 (G)
	D_n	622	D4 222	D ₃	D2 (V) 222		
	D_{nh}	D _{6h} 6/mmm	D _{4h} 4/mmm		(V _k) 2/mmm		
	<i>2</i> _{RA}	D _{3h}		n.b He).: Inte rmann	ernatio -Maug	
	D _{nd}		D _{2d} (V ₂) 42m	$\overline{\mathfrak{J}}_{\frac{3}{m}}^{2m}$			

$$E, C_2 \sigma_v, \sigma_v' \Rightarrow C_{2v}$$


Anwendungen via Gruppentheorie, z. B. Vorlesung Prof. Pehlke

Das ist noch nicht alles: Schraubenachsen, Gleitebenen

HCP structure viewed along c-axis

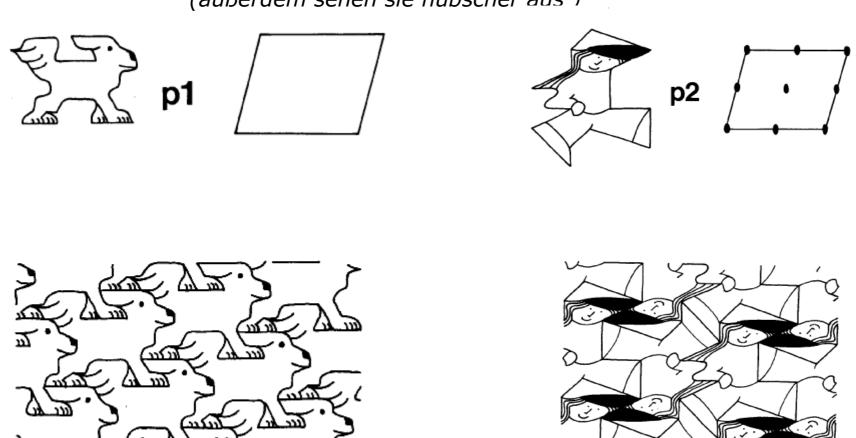
Lattice planes perpendicular to c-axis are separated by c/2

and contain, alternately, red and blue points

- Line parallel to c-axis passing through the dot is **screw axis**. Structure invariant under c/2 translation along axis followed by 60° rotation (but not invariant under either of them alone)
- Plane parallel to c-axis that intersects figure in dashed line is a **glide plane**. Structure invariant under c/2 translation along c-axis followed by reflection in glide plane (but not invariant under either of them alone)

Glück gehabt:

Die meisten Elemente & Verbindungshalbleiter sind:


fcc face-centered cubic

bcc body-centered cubic

Ein anderer Weg ins Glück:

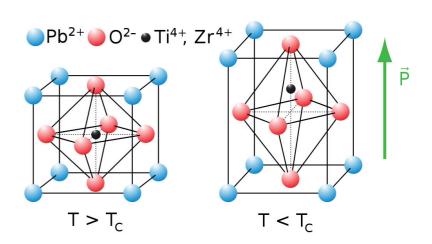
werden Sie Oberflächenphysiker (und nicht 3d-Kristallograph) ... In 2d gibt's nur 5 Bravaisgitter & 17 Raumgruppen

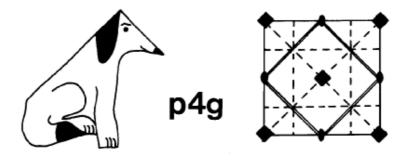
(außerdem sehen sie hübscher aus)

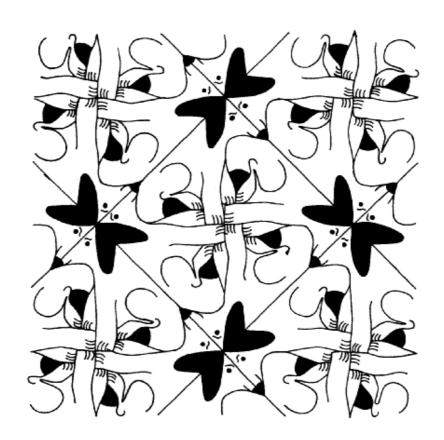
Angelo Gavezzotti: Illustrations of the Two-Dimensional Space Groups

Konsequenzen fehlender Symmetrien:

Pyroelektrizität (z. B. Turmalin) makroskopisches Dipolmoment


Piezoelektrizität (z. B. PZT) verspannungsinduziertes Dipolmoment


Optische Aktivität (z. B. Quarz) chirale Einheitszelle

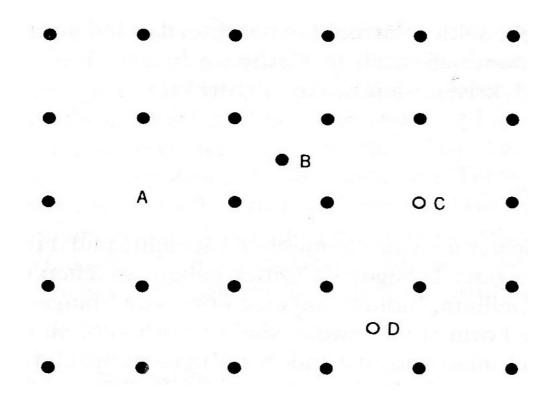

(0001)

ZnO(0001): a polar surface Wurtzite structure a = 3.25 Å c = 5.2 Å

Blei-Zirkonat-Titanat (Perowskit)

Punktdefekte

• Wirtsatome


A Leerstelle

C substitutionelles Fremdatom

O Fremdatome

B Zwischengitteratom

D interstitielles Fremdatom

Thermodynamische Potentiale

(helmholtzsche) freie Energie F = U - T S

Enthalpie H = U + p V

freie Enthalpie (Gibbs-Energie) G = H - T S

Konstant gehaltenen: Gleichgewichtsbedingung:

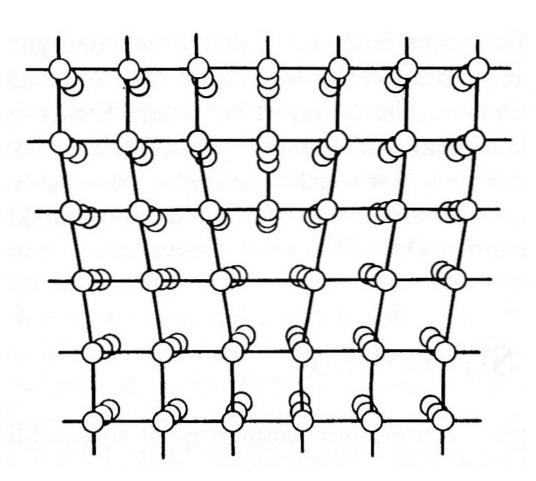
U, V Entropie S = max.

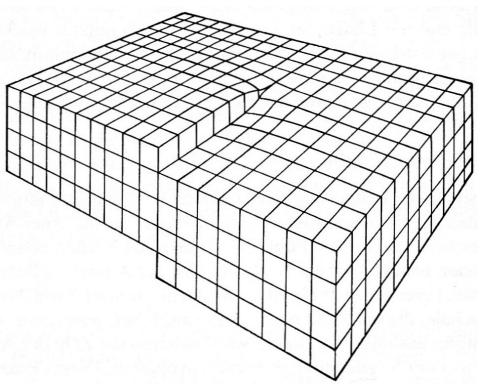
S, V innere Energie U = min.

S, p Enthalpie H = min.

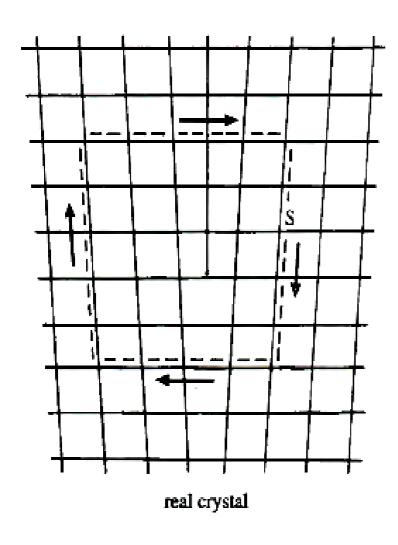
T, V freie Energie F = min.

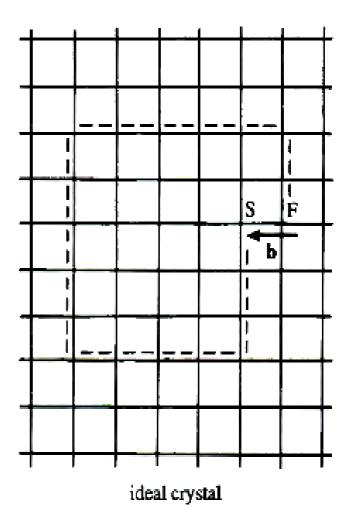
T, p Gibbs-Energie G = min.


Großkanonisches Potential $\Omega := F - \mu N = U - T S - \mu N$

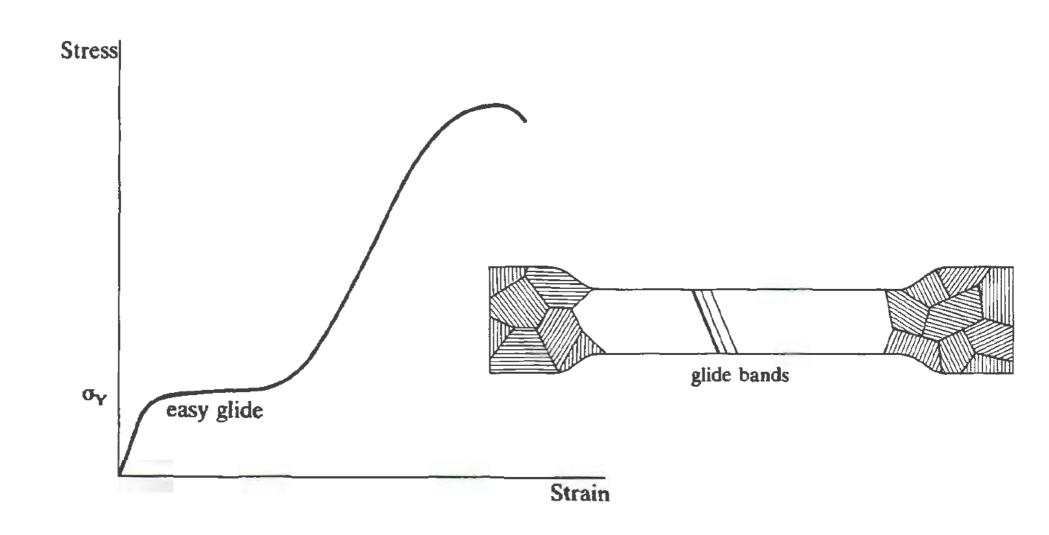

Versetzungen (dislocations)

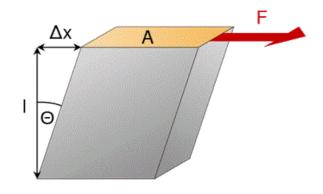
Liniendefekt


Stufenversetzung
Zusätzliche Netzebene beginnt
in Bildmitte

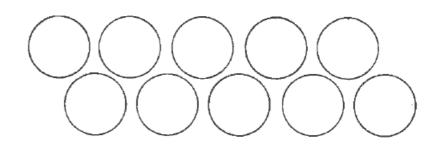

Schraubenversetzung
Versetzungsebene von vorn in
Kristallmitte
Atome links um Einheitszelle nach
oben verschoben

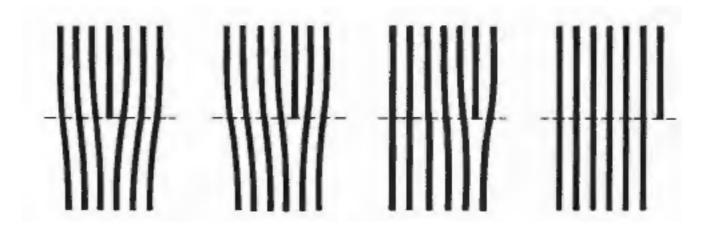
Burgersvektor b


Spannungs-Dehnungs-Kurve polykristallines Metall, sehr schematisch


Young's modulus E

$$E = \frac{\text{stress}}{\text{strain}} = \frac{\text{force per unit area}}{\text{extension per unit length}}$$


Spannungs-Dehnungs-Kurve metallischer Einkristallstab



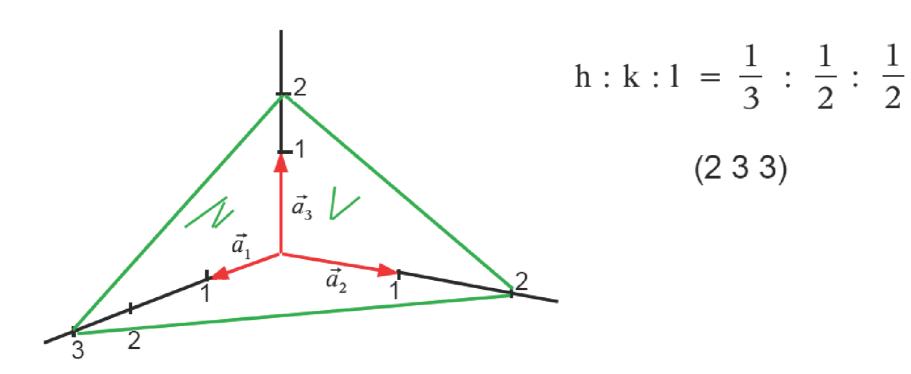
Versetzungen verringern Schermodul G drastisch

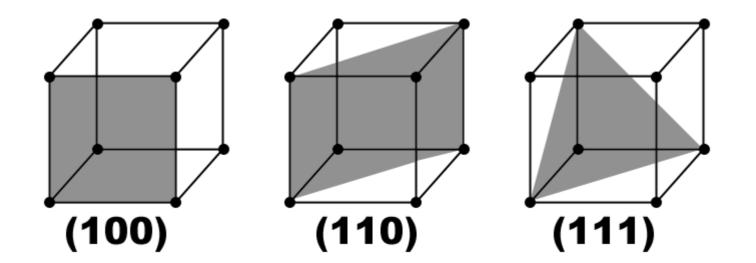
$$G=rac{F/A}{\Delta x/l}=rac{Fl}{A\Delta x}$$

Richtungen im Gitter

```
Eine Richtung \mathbf{r} = x \mathbf{a_1} + y \mathbf{a_2} + z \mathbf{a_3} wird indiziert als [x y z]
```

```
<x y z> beschreibt alle zu [x y z] symmetrie-äquivalenten Richtungen <100> also in kubischen Gittern für [100], [010], [001]
```

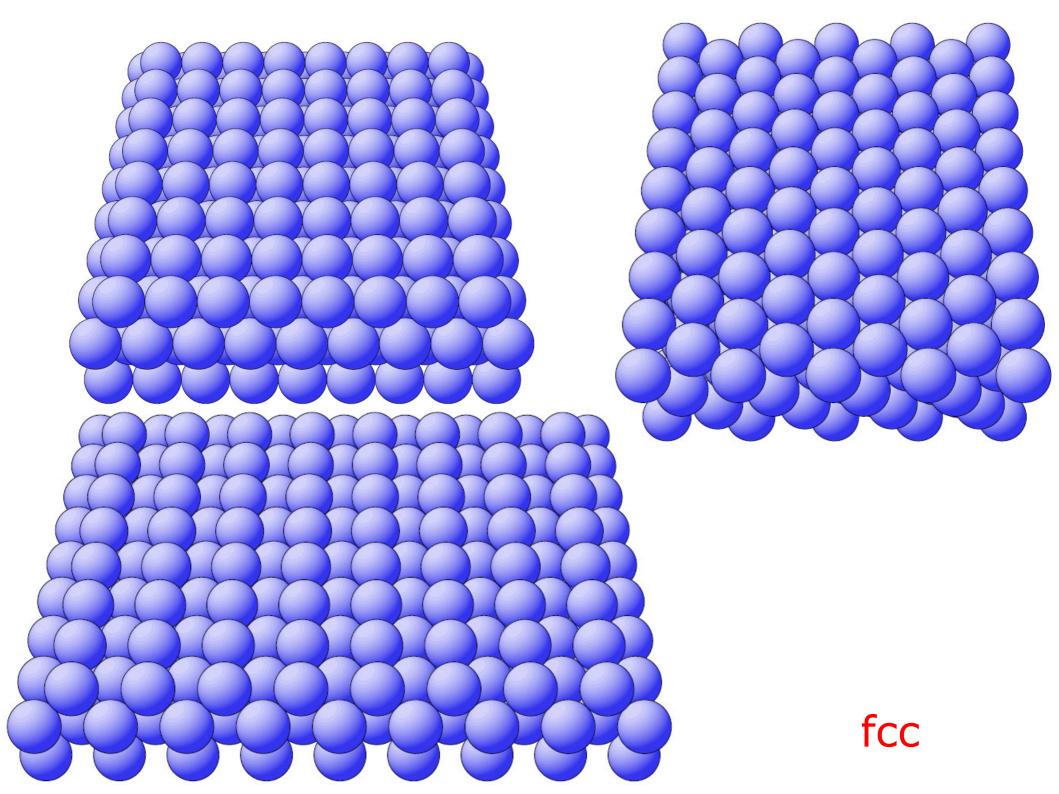

Miller Indizes: Gitterebenen

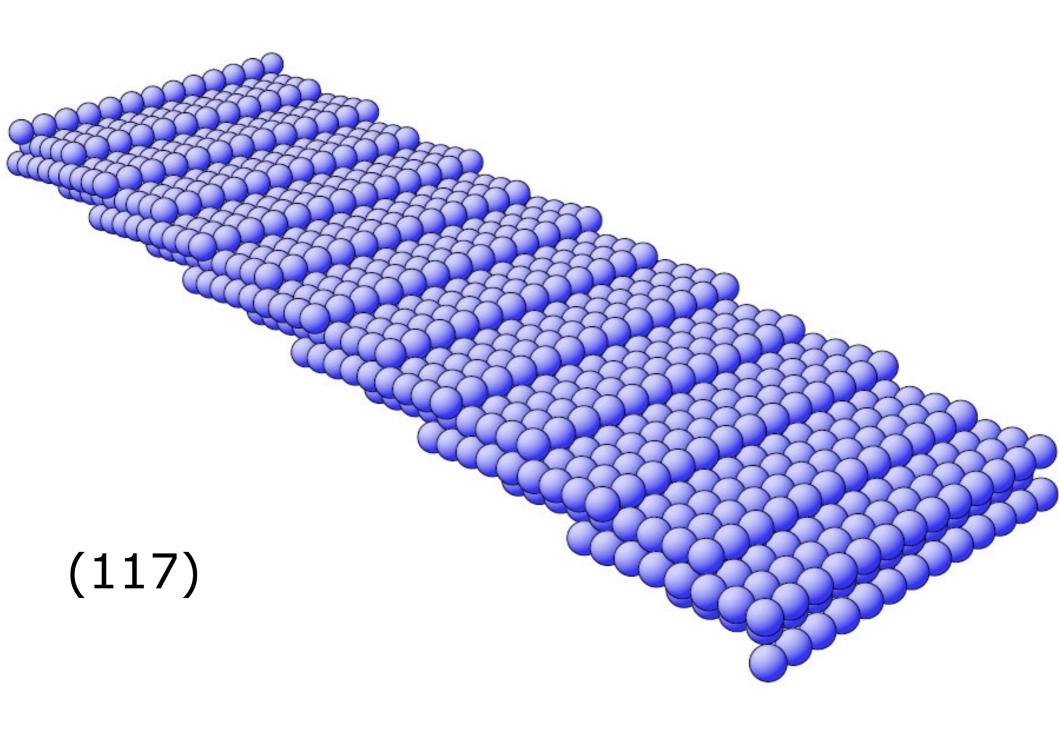

Ebene im Kristall durch Pkte $n_1 \vec{a}_1$, $n_2 \vec{a}_2$, $n_3 \vec{a}_3$

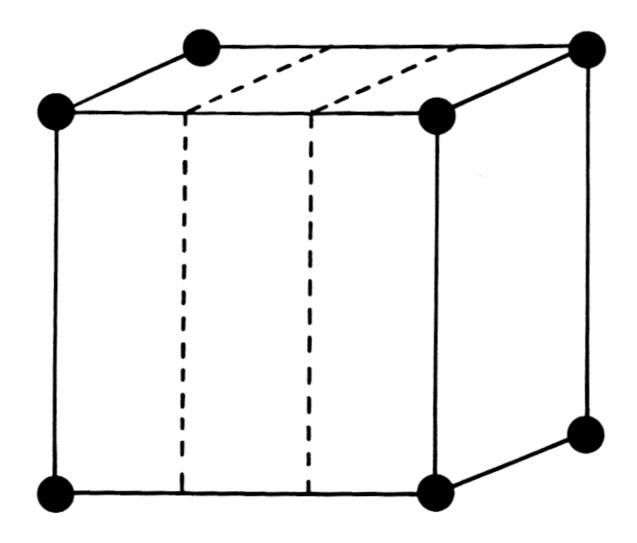
Indiziert durch Miller-Indizes (h k l)

kleinste ganze Zahlen mit:

$$h: k: l = \frac{1}{n_1}: \frac{1}{n_2}: \frac{1}{n_3}$$


$$(100) = \frac{1}{1} : \frac{1}{\infty} : \frac{1}{\infty}$$


in kubischen Kristallen:


(110)

$$(h \ k \ l) \perp [h \ k \ l]$$

{100} für (100), (010), (001)

In a simple cubic lattice only one third of the planes (300) pass through lattice points.